Reading and Writing

, Volume 16, Issue 1–2, pp 41–59 | Cite as

Phonology: An emergent consequence of memory constraints and sensory input

  • Francisco Lacerda


This paper presents a theoretical model thatattempts to account for the early stages oflanguage acquisition in terms of interactionbetween biological constraints and inputcharacteristics. The model uses theimplications of stochastic representations ofthe sensory input in a volatile and limitedmemory. It is argued that phonologicalstructure is a consequence of limited memoryresources under the pressure of ecologicallyrelevant multi-sensory information.

Emergent phonology Language acquisition Self-organizing processes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anward, J. & Lindblom, B. (2000). On the rapid perceptual processing of speech: From signal information to phonetic knowledge. Proceedings of the International Symposium on Language Processing and Interpreting, Stockholm University, Stockholm, February, 1997. Scholar
  2. Aronson, A. (1990). Clinical voice disorders. New York: Thieme.Google Scholar
  3. Bosma, J. (1975). Anatomic and physiologic development of the speech apparatus. In D. Tower (Ed.), The nervous system, vol. 3: Human communication and its disorders. New York: Raven Press.Google Scholar
  4. Chomsky, N. (1975). Reflections on language. Glasgow: William Collins Sons.Google Scholar
  5. Davis, B. & MacNeilage, P. (1990). Acquisition of correct vowel production: A quantitative case study. Journal of Speech and Hearing Research, 33, 16-27.Google Scholar
  6. Davis, K. (1947). Final note on a case of extreme social isolation. American Journal of Sociology, 52, 432-437.Google Scholar
  7. De Casper, A. & Fifer, W. (1980). Of human bonding: Newborns prefer their mothers' voices. Science, 208, 1174-1176.Google Scholar
  8. De Casper, A. & Prescott, P. (1984). Human newborns' perception of male voices: Preference, discrimination, and reinforcing value. Developmental Psychobiology, 17, 481-491.Google Scholar
  9. Dennett, D. (1995). Darwin's dangerous idea: Evolution and the meanings of life. New York: Touchstone.Google Scholar
  10. Ecklund-Flores, L. & Turkewitz, G. (1996). Asymmetric headturning to speech and nonspeech in human newborns. Developmental Psychobiology, 29, 205-217.Google Scholar
  11. Edelman, G. (1987). Neural darwinism: The theory of neuronal group selection. New York: Basic Books.Google Scholar
  12. Eimas, P., Siqueland, E., Jusczyk, P. & Vigorito, J. (1971). Speech perception in infants. Science, 171, 303-306.Google Scholar
  13. Elman, J. (1999). The emergence of language: A conspiracy theory. In B. MacWhinney (Ed.), The emergence of language (pp. 1-27). Mahwah, New Jersey: Erlbaum.Google Scholar
  14. Fant, G. (1960). Acoustic theory of speech production. The Hague, The Netherlands: Mouton.Google Scholar
  15. Fernald, A. & Kuhl, P. (1987). Acoustic determinants of infant preference of motherese speech. Infant Behavior and Development, 10, 279-293.Google Scholar
  16. Frieda, E., Walley, A., Flege, J. & Sloane, M. (1999). Adults' perception of native and nonnative vowels: Implications for the perceptual magnet effect. Perception and Psychophysics, 61, 561-577.Google Scholar
  17. Gleitman, L. & Newport, E. (1995). The invention of language by children: Environmental and biological influences on the acquisition of language, In L. Gleitman, M. Liberman & D. Osherson (Eds.), Language, vol. 1: An invitation to cognitive science. Cambridge: MIT Press.Google Scholar
  18. Greenough, W. & Alcantara, A. (1993). The roles of experience in different developmental information stage processes. In B. de Boysson-Bardies, S. de Schonen, P. Jusczyk, P. McNeilage & J. Morton (Eds.), Developmental neurocognition: Speech and face processing in the first year of life (pp. 3-16). Dordrecht, The Netherlands: Kluwer Academic Publishers.Google Scholar
  19. Jacob, F. (1982). The possible and the actual. Seattle: University of Washington Press.Google Scholar
  20. Jusczyk, P. (1997). The discovery of spoken language. Cambridge: MIT Press.Google Scholar
  21. Kelly, G. (1963). A theory of personality: The psychology of personal constructs. New York: W.W. Norton.Google Scholar
  22. Kuhl, P. & Miller, J. (1975). Speech perception by the chinchilla: Voiced voiceless distinction in alveolar-plosive consonants. Science, 190, 69-72.Google Scholar
  23. Kuhl, P. & Padden, D. (1982). Enhanced discriminability at the phonetic boundaries for the voicing feature in macaques. Perception and Psychophysics, 32, 542-550.Google Scholar
  24. Kuhl, P. & Padden, D. (1983). Enhanced discriminability at the phonetic boundaries for the place feature in macaques. Journal of the Acoustical Society of America, 73, 1003-1010.Google Scholar
  25. Kuhl, P., Williams, K., Lacerda, F., Stevens, K. & Lindblom, B. (1992). Linguistic experience alters phonetic perception in infants by 6 months of age. Science, 55, 606-608.Google Scholar
  26. Lacerda, F. (1993). Sonority contrasts dominate young infants' vowel perception. PERILUS XVII, 55-63, Stockholm University.Google Scholar
  27. Lacerda, F. (1994). The asymmetric structure of the infant's perceptual vowel space. Journal of the Acoustical Society of America, 95, 3016 (A).Google Scholar
  28. Lacerda, F. (1995). The perceptual magnet-effect: An emergent consequence of exemplarbased phonetic memory. In K. Elenius & P. Branderud (Eds.), Proceedings of the international congress of phonetic sciences 95, Vol. 2 (pp. 140-147). Stockholm: ICPhS.Google Scholar
  29. Lacerda, F. (1998). An exemplar-based account of emergent phonetic categories. Journal of the Acoustical Society of America, 103, 2980-2981.Google Scholar
  30. Lacerda, F. & Ichijima, T. (1995). Adult judgements of infant vocalizations. In K. Elenius & P. Branderud (Eds.), Proceedings of the International Congress of Phonetic Sciences 95, Vol. 1 (pp. 142-145). Stockholm: ICPhS.Google Scholar
  31. Lacerda, F. & Lindblom, B. (1997). Modeling the early stages of language acquisition. In Å. Olofsson & S. Strömqvist (Eds.), Cross-linguistic studies of dyslexia and early language development (pp. 14-33). Brussels: European Commission/COST A8.Google Scholar
  32. Lacerda, F. & Lindblom, B. (1998). Some remarks on Tallal's transform in the light of emergent phonology, In C. von Euler, I. Lundberg & R. Llinás (Eds.), Basic mechanisms in cognition and language(pp. 263-283). Amsterdam: Elsevier.Google Scholar
  33. Liljencrants, J. and Lindblom, B. (1972). Numerical simulation of vowel quality systems: The role of perceptual contrast. Language, 48, 839-862.Google Scholar
  34. Lindblom, B. and Maddieson, I (1988). Phonetic universals in consonant systems. In L.M. Hyman & C.N. Li (Eds.), Language, speech and mind: Studies in honor of Victoria Fromkin (pp. 62-78). London: Routledge.Google Scholar
  35. Lindblom, B. (1992). Phonological units as adaptive emergents of lexical development. In C.A. Ferguson, L. Menn & C. Stoel-Gammon (Eds.), Phonological development (pp. 131- 163). Timonium, Maryland: York Press.Google Scholar
  36. Locke, J. (1996). Why do infants begin to talk? Language as an unintended consequence. Journal of Child Language, 23, 251-268.Google Scholar
  37. MacNeilage, P. & Davis, B. (2000). On the origin of internal structure of word forms. Science, 288, 527-531.Google Scholar
  38. Pinker, S. (1994). The language instinct. New York: Morrow.Google Scholar
  39. Ramus, F., Hauser, M., Miller, C., Morris, D. & Mehler, J. (2000). Language discrimination by human newborns and by cotton-top tamarin monkeys. Science, 288, 349-351.Google Scholar
  40. Routh, D. (1967). Conditioning of vocal response differentiation in infant. Developmental Psychology, 1, 219-226.Google Scholar
  41. Saffran, J., Aslin, R. & Newport, E. (1996). Statistical learning by 8-month-old infants. Science, 274, 1926-1928.Google Scholar
  42. Stevens, S. & Davis, H. (1938). Hearing, its psychology and physiology. New York: John Wiley.Google Scholar
  43. Sundberg, U. (1998). Mother tongue - Phonetic aspects of infant-directed speech, Unpublished Ph.D. thesis, PERILUS XXI, Stockholm University.Google Scholar
  44. Tulving, E. (1998). Neurocognitive processes of human memory. In C. von Euler, I. Lundberg & R. Llinás (Eds.), Basic mechanisms in cognition and language (pp. 263-283), Amsterdam: Elsevier.Google Scholar
  45. Turkewitz, G. (1993). The origins of differential hemispheric strategies for information processing in the relationships between voice and face perception. In B. de Boysson-Bardies, S. de Schonen, P. Jusczyk, P. McNeilage & J. Morton (Eds.), Developmental neurocognition: Speech and face processing in the first year of life (pp. 165-170). Dordrecht, The Netherlands: Kluwer Academic Publishers.Google Scholar
  46. Varendi, H., Porter, R. & Winberg, J. (1996). Attractiveness of amniotic fluid odor: Evidence of prenatal olfactory learning? Acta Paediatrica, 85, 1223-1227.Google Scholar
  47. Varendi, H., Porter, R. & Winberg, J. (1997). Natural odor preferences of newborn infants change over time. Acta Paediatrica, 86, 985-990.Google Scholar
  48. Zohary, E., Celebrini, S., Britten, K. & Newsome, W. (1994). Neuronal plasticity that underlies improvement in perceptual performance. Science, 263, 1289-1292.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Francisco Lacerda
    • 1
  1. 1.Department of LinguisticsStockholm UniversityStockholmSweden

Personalised recommendations