Plasma Chemistry and Plasma Processing

, Volume 18, Issue 1, pp 1–27 | Cite as

New Method to Calculate Thermodynamic and Transport Properties of a Multi-Temperature Plasma: Application to N2 Plasma

  • J. Aubreton
  • M. F. Elchinger
  • P. Fauchais


Multi-temperature thermal plasmas have often to be considered to account for the nonequilibrium effects. Recently André et al. have developed the calculation of concentrations in a multi-temperature plasma by artificially separating the partition functions into a product by assuming that the excitation energies are those of the lower levels (electronic, vibration, and rotation). However, at equilibrium, differences, increasing with temperature, can be observed between partition functions calculated rigorously and with their method. This paper presents a modified method where it has been assumed that the preponderant rotational energy is that of the vibrational level v=0 of the ground electronic state and the preponderant vibrational energy is that of the ground electronic state. The internal partition function can then be expressed as a product of series expressions. At equilibrium for N2and N 2 + partition functions the values calculated with our method differ by less than 0.1% from those calculated rigorously. The calculation has been limited to three temperatures: heavy species Th, electrons Te, and vibrational Tvtemperatures. The plasma composition has been calculated by minimizing the Gibbs free enthalpy with the steepest descent numerical technique. The nonequilibrium properties have been calculated using the method of Devoto, modified by Bonnefoi and Aubreton. The ratio θ=Te/Thwas varied between 1 and 2 as well as the ratio θ v =T v /T h for a nitrogen plasma. At equilibrium the corresponding equilibrium transport properties of Ar and N2are in good agreement with those of Devoto and Murphy except for T>10,000 K where we used a different interaction potential for N–N+. The effects of θvand θeon thermodynamic and transport properties of N2are then discussed.

Multi-temperature thermal plasma partition functions plasma composition thermodynamic properties transport properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Fauchais and M. Vardelle, Pure Appl. Chem. 66(6), 1247–1258 (1994).Google Scholar
  2. 2.
    M. Back and A. Gruchov, Pure Appl. Chem. 64(5), 665–677 (1992).Google Scholar
  3. 3.
    G. Angblom and K. Falck, Welding in the World 30(7/8), 201–209 (1993).Google Scholar
  4. 4.
    D. Neuschutz, H. O. Rossener, and H. J. Bebber, Iron and Steel Engineer, May, 27–33 (1995).Google Scholar
  5. 5.
    N. Barcza, “Application of plasma technology to steel processing,” in Plasma Technology in Metallurgy, J. Feinman (ed.), Iron and Steel Soc. of AIME (1987).Google Scholar
  6. 6.
    C. Oberlin, J. High Temp. Chem. Proc. 3, 719–732 (1994).Google Scholar
  7. 7.
    J. M. Baronnet, J. High Temp. Chem. Proc. 1(4), 577–598 (1992).Google Scholar
  8. 8.
    F. Gitzhofer, Pure Appl. Chem. 68(5), 1113–1120 (1996).Google Scholar
  9. 9.
    P. Fauchais, A. Vardelle, and A. Denoirjean, “Reactive thermal plasmas: deposition, ultrafine particles synthesis,” 9th International Conference on Plasma Surface Engineering, Garmish, Partenkirschen, D, Sept. 1996, accepted in J. Surf. Coat. Tech. Google Scholar
  10. 10.
    M. Vardelle, A. Vardelle, C. Trassy, and P. Fauchais, Plasma Chem. Plasma Process. 11(2), 185–201 (1991).Google Scholar
  11. 11.
    P. Fauchais, J. F. Coudert, and M. Vardelle, “Diagnostics in thermal plasma processing,” in Plasma Diagnostics, Vol. 1, O. Auciello and D. L. Flamm (eds.), Academic Press, New York (1989), pp. 349–446.Google Scholar
  12. 12.
    J. R. Fincke, Pure Appl. Chem. 68(5), 1001–1006 (1996).Google Scholar
  13. 13.
    J. Szekely and R. C. Westhoff, “Recent advances in the mathematical modeling of transport phenomena in plasma systems,” Thermal Plasma Applications, in Materials and Metallurgical Processing, N. El-Kaddah (ed.), The Minerals, Metals and Materials Society pp. 55–62.Google Scholar
  14. 14.
    J. D. Ramshaw and C. H. Chang, Plasma Chem. Plasma Process. 12(2), 299–311 (1992).Google Scholar
  15. 15.
    C. Delalondre, S. Zahrai, and O. Simonin, in Heat and Mass Transfer under Thermal Plasma Conditions, P. Fauchais (ed.), (Begell House, N.Y., 1995), pp. 1–14.Google Scholar
  16. 16.
    P. C. Huang, J. Heberlein, and E. Pfender, Plasma Chem. Plasma Process. 15(1), 25–31 (1995).Google Scholar
  17. 17.
    M. Rahmane, G. Soucy, and M. I. Boulos, Plasma Chem. Plasma Process. 16(1), 169S–189S (1996).Google Scholar
  18. 18.
    M. I. Boulos, P. Fauchais, A. Vardelle, and E. Pfender, Fundamentals of plasma particle momentum and heat transfer, in Plasma Spraying: Theory and Applications, R. Suryanarayanan, ed., (world Scientific Publishing 1993), pp. 3–60.Google Scholar
  19. 19.
    S. H. Storey and F. van Zeggeren, The Computation of Chemical Equilibria, Cambridge Univ. Press (1970).Google Scholar
  20. 20.
    W. B. White, S. M. Johnson, G. B. Dantzig, J. Chem. Phys. 28, 751–763 (1958).Google Scholar
  21. 21.
    B. Pateyron, M. F. Elchinger, G. Delluc, and P. Fauchais, Plasma Chem. Plasma Process. 12(4), 421–448 (1992).Google Scholar
  22. 22.
    J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids, Wiley, New York (1964).Google Scholar
  23. 23.
    S. Chapman and T. G. Cowling, Mathematical Theory of Non-uniform Gases, Cambridge University Press, London (1964).Google Scholar
  24. 24.
    R. S. Devoto, Phys. Fluids 29, 1230–1238 (1966).Google Scholar
  25. 25.
    R. S. Devoto, Phys. Fluids 10, 2105–2111 (1967).Google Scholar
  26. 26.
    C. Gorse, “Contribution to the calculation of transport properties of Ar-H2 and Ar-N2 mixtures” (in French), Thèse 3ème Cycle, Université de Limoges, France, Nb 75-10 (1975).Google Scholar
  27. 27.
    C. Bonnefoi, “Contribution to theoretical calculation of transport coefficients of a nitrogen plasma using the Chapman-Enskog method with the fourth approximation of Sonine polynomial expansion” (in French), Thèse de 3ème Cycle, Université de Limoges, France (1975).Google Scholar
  28. 28.
    J. Aubreton, “Study of thermodynamic and transport properties of thermal plasmas at equilibrium or out of equilibrium: application to Ar-H2 and Ar-O2 mixtures” (in French), Thèse d'Etat, Université de Limoges, France, 22 Février 1985.Google Scholar
  29. 29.
    J. N. Butler and R. S. Brokaw, J. Chem. Phys. 26(6), 1636–1642 (1957).Google Scholar
  30. 30.
    A. Eucken, Z. Phys. 14, 324–332 (1913).Google Scholar
  31. 31.
    C. H. Kruger, Phys. Fluids 13, 1737–1741 (1970).Google Scholar
  32. 32.
    J. F. Coudert, E. Bourdin, J. M. Baronnet, J. Rakowitz, and P. Fauchais, J. Phys., Colloq. 7,C7, 335–347 (1979).Google Scholar
  33. 33.
    H. Shindo, T. Inaba, and S. Imazu, J. Phys. D. 13, 805–813 (1980).Google Scholar
  34. 34.
    E. Pfender, “Thermal plasma-wall boundary layers,” Int. Seminar on Heat and Mass Transfer, Izmir, T. July (1994), P. Fauchais (ed.), (Begell House, N.Y., 1995), p. Begell House, N.Y. (1995), p. 223.Google Scholar
  35. 35.
    W. L. T. Chen, J. Heberlein, and E. Pfender. Plasma Chem. Plasma Process. 14(3), 317–332 (1994).Google Scholar
  36. 36.
    S. C. Snyder, L. D. Reynolds, G. Lassahn, J. R. Fincke, C. Shaw, and R. Kearney, Phys. Rev. E47, 1996–2005 (1993).Google Scholar
  37. 37.
    E. Richley and D. T. Tuma, J. Appl. Phys. 53(12), 8537–8542 (1982).Google Scholar
  38. 38.
    A. V. Potapov, High Temp. 4(1), 48–51 (1966).Google Scholar
  39. 39.
    R. S. Devoto, “The transport properties of a partially ionized monatomic gas,” Ph.D. Thesis, Department of Aeronautics and Astronautics, Stanford University (1964).Google Scholar
  40. 40.
    R. M. Chmielski, “Transport properties of a non-equilibrium partially ionized gas,” Ph.D. Thesis, Department of Mechanical Engineering, Stanford University (1967).Google Scholar
  41. 41.
    C. Bonnefoi, “Contribution to the study of solving methods of Boltzmann equation in a two-temperature plasma: example Ar-H2 mixture” (in French), Thèse d'Etat, Université de Limoges, France, 9 Mai 1983.Google Scholar
  42. 42.
    C. Bonnefoi, J. Aubreton, and J. Mexmain, Z. Naturforsch. A. 40A, 885–893 (1985).Google Scholar
  43. 43.
    P. Fauchais and J. F. Coudert, Rev. Gén. Therm. 35(413), 324–330 (1996).Google Scholar
  44. 44.
    P. André, M. Abbaoui, A. Lefort, and M. J. Parizet, Plasma Chem. Plasma Process. 16(3), 379–398 (1996).Google Scholar
  45. 45.
    J. Aubreton and P. Fauchais. Rev. Phys. Appl. 18, 51–62 (1983).Google Scholar
  46. 46.
    K. P. Huber and G. Herzberg, Molecular Spectra and Molecular Structure IV. Constant of Diatomic Molecules, Van Nostrand Reinhold (1979).Google Scholar
  47. 47.
    A. B. Murphy and C. J. Arundell, Plasma Chem. Plasma Process 14(4), 451–490 (1994).Google Scholar
  48. 48.
    M. Capitelli and R. S. Devoto, Phys. Fluids 16, 1835–1842 (1973).Google Scholar
  49. 49.
    J. R. Stallcop and H. Partridge, J. Chem. Phys. 95(9), 6429–6437 (1991).Google Scholar
  50. 50.
    J. M. Parson, P. E. Siska, and Y. T. Lee, J. Chem. Phys. 56, 1511–1518 (1972).Google Scholar
  51. 51.
    P. Kovitya, IEEE Trans. Plasma Sci. P.S.12, 38 (1984).Google Scholar
  52. 52.
    V. A. Belyaev, B. G. Brezhnev, and E. M. Erastov, Sov. Phys. JETP 27, 924 (1968).Google Scholar
  53. 53.
    M. Capitelli, R. Celiberto, and C. Gorse, Plasma Chem. Plasma Process. 16(2), 267S–302S (1996).Google Scholar
  54. 54.
    M. Pons, E. Blanquet, J. M. Dedulle, I. Garcon, R. Madar, and C. Bernard, J. Electrochem. Soc. 183(11), 3727–3735 (1996).Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • J. Aubreton
    • 1
  • M. F. Elchinger
    • 1
  • P. Fauchais
    • 1
  1. 1.Laboratoire Matériaux Céramiques et Traitement de Surface, Equipe Plasma Laser MatériauxUniversité de LimogesLimoges CédexFrance

Personalised recommendations