Journal of Optimization Theory and Applications

, Volume 103, Issue 3, pp 543–555 | Cite as

Time-Dependent Traffic Equilibria

  • P. Daniele
  • A. Maugeri
  • W. Oettli


We consider the existence, characterization, and calculation of equilibria in transportation networks, when the route capacities and demand requirements depend on time. The problem is situated in a Banach space setting and formulated in terms of a variational inequality.

Transportation networks equilibrium solutions Wardrop condition time-dependent requirements 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Maugeri, A., Optimization Problems with Side Constraints and Generalized Equilibrium Principles, Le Matematiche, Vol. 49, pp. 305–312, 1994.Google Scholar
  2. 2.
    Maugeri, A., Monotone and Nonmonotone Variational Inequalities, Rendiconti del Circolo Matematico di Palermo, Serie 2, Supplemento, Vol. 48, pp. 179–184, 1997.Google Scholar
  3. 3.
    Maugeri, A., Dynamic Models and Generalized Equilibrium Problems, New Trends in Mathematical Programming, Edited by F. Giannessi et al., Kluwer, Dordrecht, Holland, pp. 191–202, 1998.Google Scholar
  4. 4.
    Maugeri, A., Oettli, W., and SchlÄger, D., A Flexible Form of Wardrop's Principle for Traffic Equilibria with Side Constraints, Rendiconti del Circolo Matematico di Palermo, Serie 2, Supplemento, Vol. 48, pp. 185–193, 1997.Google Scholar
  5. 5.
    Smith, M. J., A New Dynamic Traffic Model and the Existence and Calculation of Dynamic User Equilibria on Congested Capacity-Constrained Road Networks, Transportation Research, Vol. 27B, pp. 49–63, 1993.Google Scholar
  6. 6.
    Schaefer, H. H., Topological Vector Spaces, Springer, New York, New York, 1971.Google Scholar
  7. 7.
    Ferrari, P., Equilibrium in Asymmetric Multimodal Transport Networks with Capacity Constraints, Le Matematiche, Vol. 49, pp. 223–241, 1994.Google Scholar
  8. 8.
    Larsson, T., and Patriksson, M., Equilibrium Characterizations of Solutions to Side-Constrained Asymmetric Traffic Assignment Models, Le Matematiche Vol. 49, pp. 249–280, 1994.Google Scholar
  9. 9.
    Oettli, W., and SchlÄger, D., Generalized Vectorial Equilibria and Generalized Monotonicity, Functional Analysis with Current Applications, Edited by M. Brokate and A. H. Siddiqi, Longman, Harlow, England, pp. 145–154, 1998.Google Scholar
  10. 10.
    Conway, J. B., A Course in Functional Analysis, 2nd Edition, Springer, New York, New York, 1990.Google Scholar
  11. 11.
    Auslender, A., Optimisation: Méthodes Numériques, Masson, Paris, France, 1976.Google Scholar
  12. 12.
    Oettli, W., An Iterative Method, Having Linear Rate of Convergence, for Solving a Pair of Dual Linear Programs, Mathematical Programming, Vol. 3, pp. 302–311, 1972.Google Scholar

Copyright information

© Plenum Publishing Corporation 1999

Authors and Affiliations

  • P. Daniele
    • 1
  • A. Maugeri
    • 2
  • W. Oettli
    • 3
  1. 1.Dipartimento di MatematicaUniversità di CataniaCataniaItaly
  2. 2.Dipartimento di MatematicaUniversità di CataniaCataniaItaly
  3. 3.Fakultät für Mathematik und InformatikUniversität MannheimMannheimGermany

Personalised recommendations