Functional Analysis and Its Applications

, Volume 36, Issue 4, pp 267–280

Polynomial Lie Algebras

  • V. M. Buchstaber
  • D. V. Leykin
Article

Abstract

We introduce and study a special class of infinite-dimensional Lie algebras that are finite-dimensional modules over a ring of polynomials. The Lie algebras of this class are said to be polynomial. Some classification results are obtained. An associative co-algebra structure on the rings k[x1,...,xn]/(f1,...,fn) is introduced and, on its basis, an explicit expression for convolution matrices of invariants for isolated singularities of functions is found. The structure polynomials of moving frames defined by convolution matrices are constructed for simple singularities of the types A,B,C, D, and E6.

Lie algebra, moving frame, convolution of invariants, co-algebra 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V.I. Arnold, Singularities of Caustics and Wave Fronts, Kluwer Academic Publishers Group, Dordrecht, 1990.Google Scholar
  2. 2.
    V.M. Buchstaber, “Semigroups of maps into groups, operator doubles and complex cobordisms,” Amer. Math. Soc. Transl. (2), Vol. 170, 1995, pp. 9–35.Google Scholar
  3. 3.
    V.M. Buchstaber, “Groups of polynomial transformations of a line, informal symplectic manifolds, and the Landweber–Novikov algebra,” Usp. Mat. Nauk, 54, No.4, 161–162 (1999).Google Scholar
  4. 4.
    V. M. Buchstaber and D. V. Leykin, “Lie algebras associated with σ-functions and versal deformations,” Usp. Mat. Nauk, 57, No.3, 145–146, 2002.Google Scholar
  5. 5.
    V. M. Buchstaber and D. V. Leykin, “Graded Lie algebras that define hyperelliptic sigma functions,” Dokl. RAS, 385, No.5, 2002.Google Scholar
  6. 6.
    V. M. Buchstaber, V. Z. Enolskii, and D. V. Leykin, “Hyperelliptic Kleinian functions and applications,” In: Solitons, Geometry, and Topology: on the Crossroad, Amer. Math. Soc. Transl., Ser. 2, Vol. 179, Amer. Math. Soc., Providence, 1997, pp. 1–34.Google Scholar
  7. 7.
    V. M. Buchstaber, V. Z. Enolskii, and D. V. Leykin, “Kleinian functions, hyperelliptic Jacobians and applications,” Rev. Math. Math. Phys., 10, No.2, 3–120 (1997).Google Scholar
  8. 8.
    B. Dubrovin, Geometry of 2D topological field theories, In: Integrable systems and quantum groups (Montecatini Terme, 1993), Lect. Notes in Math., Vol. 1620, Springer-Verlag, Berlin, 1996, pp. 120–348.Google Scholar
  9. 9.
    B. A. Dubrovin, S. P. Novikov, and A. T. Fomenko, Modern Geometry. Methods and applications, Part I, Graduated Text in Math., Vol. 93, Springer-Verlag, New York Berlin, 1984.Google Scholar
  10. 10.
    B. A. Dubrovin and S. P. Novikov, Hydrodynamics of weakly deformed soliton lattices. Differential geometry and Hamiltonian theory,” Usp. Mat. Nauk, 44, No.6, 29–98 (1989).Google Scholar
  11. 11.
    B. Dubrovin and Y. Zang, “Frobenius manifold and Virasoro constraints,” Selecta Math. (N.S.), 5, No.4, 423–466 (1999).Google Scholar
  12. 12.
    A. B. Givental, “Convolution of invariants of groups generated b reflections and associated with simple singularities of functions,” Funkts. Anal. Prilozhen., 14, No.2, 4–14 (1980).Google Scholar
  13. 13.
    A. B. Givental, “Gromov-Witten invariants and quantization of quadratic Hamiltonians,” MMJ, 1, No.4, 551–568 (2001).Google Scholar
  14. 14.
    M. V. Karasev and V. P. Maslov, Nonlinear Poisson Brackets. Geometry and Quantization, Amer. Math. Soc., Providence, RI, 1993.Google Scholar
  15. 15.
    S. P. Novikov, “Various doublings of Hopf algebras. Algebras of operators on quantum groups, complex cobordisms,” Usp. Mat. Nauk, 47, No.5, 189–190 (1992).Google Scholar
  16. 16.
    K. Saito, “Theory of logarithmic differential forms and logarithmic vector filds,” J. Fac. Sci. Univ. Tokyo Sect. Math., 27, 263–291 (1980).Google Scholar
  17. 17.
    M. A. Semenov-Tian-Shansky, “Poisson Lie groups, quantum dualit principle and the quantum double,” Contemp. Math., 175, 219–248 (1994).Google Scholar
  18. 18.
    K. Weierstraß, Zur Theorie der elliptischen Funktionen,Mathematische Werke, Vol. 2, Teubner, Berlin, 1894, pp. 245–255.Google Scholar
  19. 19.
    V. M. Zakalyukin, “Reconstructions of wave fronts depending on one parameter,” Funkts. Anal. Prilozhen., 10, No.2, 69–70 (1976).Google Scholar
  20. 20.
    New Developments in Singularit Theory (D. Siersma, C.T.C. Wall, V. Zakalyukin, eds.), NATO Science Series II,Vol. 21., 2001.Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • V. M. Buchstaber
  • D. V. Leykin

There are no affiliations available

Personalised recommendations