Advertisement

Fast Identification of Parameters in Optical Systems

  • C. L. Meng
  • J. S. Gibson
Article
  • 49 Downloads

Abstract

This paper presents a scheme for fast identification of parameters in systems that yield large-order measurement vectors. The method can be applied to real-time identification and control. In the paper, the scheme is applied to identification and control of an optical model of a space antenna. Both the mathematical models and numerical results are presented.

Parameter identification feedback control real-time identification and control optical systems space antennas 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Redding, D. C., and Breckenridge, W. G., Linearized Ray-Trace Analysis, Proceedings of the 1990 International Lens Design Conference, Edited by G. Lawrence, SPIE, Vol. 1354, pp. 216–221, 1990.Google Scholar
  2. 2.
    Redding, D. C., Milman, M., and Lobada, G., Linear Analysis of Optomechanical Systems, Controls for Optical Systems, Edited by J. V. Breakwell, SPIE, Vol. 1696, pp. 84–100, 1992.Google Scholar
  3. 3.
    Redding, D. C., and Breckenridge, W. G., Optical Modeling for Dynamics and Control Analysis, Journal of Guidance, Control, and Dynamics, Vol. 14, 1991.Google Scholar
  4. 4.
    Golub, G. H., and Van Loan, C. F., Matrix Computations, John Hopkins University Press, Baltimore, Maryland, 1989.Google Scholar
  5. 5.
    Meng, C. L., Identification and Control of Mechanical and Optical Systems Using Distributed Sensing, PhD Thesis, University of California, Los Angeles, California, 1993.Google Scholar
  6. 6.
    Klein, M. V., and Furtak, T. E., Optics, John Wiley and Sons, New York, New York, 1986.Google Scholar
  7. 7.
    Born, M., and Wolf, E., Principles of Optics, Pergamon Press, Oxford, England, 1980.Google Scholar
  8. 8.
    Goodman, J. W., Introduction to Fourier Optics, McGraw-Hill Book Company, New York, New York, 1988.Google Scholar
  9. 9.
    Papoulis, A., The Fourier Integral and Its Application, McGraw-Hill Book Company, New York, New York, 1962.Google Scholar
  10. 10.
    Proakis, J. G., and Manolakis, D. G., Introduction to Digital Signal Processing, Macmillan Publishing Company, New York, New York, 1988.Google Scholar
  11. 11.
    Brigham, E. O., The Fast Fourier Transform, Prentice-Hall, Englewood Cliffs, New Jersey, 1974.Google Scholar
  12. 12.
    Anderson, B. D. O., and More, J. B., Linear Optimal Control, Prentice-Hall, Englewood Cliffs, New Jersey, 1971.Google Scholar
  13. 13.
    Kwakernaak, H., and Sivan, S., Linear Optimal Control Systems, John Wiley and Sons, New York, New York, 1972.Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • C. L. Meng
    • 1
  • J. S. Gibson
    • 2
  1. 1.Mechanical and Aerospace Engineering DepartmentUniversity of CaliforniaLos Angeles
  2. 2.Mechanical and Aerospace Engineering DepartmentUniversity of CaliforniaLos Angeles

Personalised recommendations