Journal of Dynamical and Control Systems

, Volume 5, Issue 2, pp 173–226

A Survey of Recent Results in the Spectral Theory of Ergodic Dynamical Systems

  • G.R. Goodson


The purpose of this paper is to survey recent results in the spectral theory of ergodic dynamical systems. In addition we prove some known results using new methods and mention some new results, including the recent solution to Rokhlin's problem concerning ergodic transformations having a homogeneous spectrum of multiplicity two. We emphasize applications of ideas arising from the theory of joinings and Markov intertwinings.

Ergodic automorphisms spectrum intertwining operators 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. M. Abramov, Metric automorphisms with quasi-discrete spectrum. Izv. Akad. Nauk SSSR 26 (1962), 513–550. English translation: Am. Math. Soc. Transl. 39 (1964), 37–56.Google Scholar
  2. 2.
    T. Adams, Smorodinsky's oconjecture on rank one systems. To appear in: Proc. Am. Math. Soc. Google Scholar
  3. 3.
    T. Adams and N. A. Friedman, The staircase transformation. To appear in: Ergod. Theory Dynam. Syst. Google Scholar
  4. 4.
    R. L. Adler, On a conjecture of Fomin. Proc. Am. Math. Soc. 13 (1962), 433–436.Google Scholar
  5. 5.
    O. N. Ageev, Mixing in the components and rearrangements of T α,β. (Russian) Russ. Math. Surv. 49 (1994), 141–142.Google Scholar
  6. 6.
    _____, Dynamical systems with a Lebesgue component of even multiplicity in their spectrum. Math. Sb. 64 (1989), 305–317.Google Scholar
  7. 7.
    _____, Conjugacy of a group action to its inverse. Mat. Zametki 45 (1989), 3–11.Google Scholar
  8. 8.
    _____, Actions by automorphisms of commutative compact groups with a countable Lebesgue component in the spectrum. Mat. Zametki 49 (1991), 14–22.Google Scholar
  9. 9.
    _____, On centralizer of rigid transformations. (Russian) Math. Sb. 75 (1993), 445–472.Google Scholar
  10. 10.
    _____, The spectral type of the rearrangement T α,β. (Russian) Math. Sb. 188 (1997), 1119–1152.Google Scholar
  11. 11.
    _____, The spectral multiplicity function and geometric representation of interval exchange transformations. (Russian) To appear in: Math. Sb. Google Scholar
  12. 12.
    _____, On ergodic transformations with homogeneous spectrum. J. Dynam. Control Syst. 5 (1999), No. 1, 149–152.Google Scholar
  13. 13.
    V. M. Alexeyev, Existence of a bounded function of the maximal spectral type. Ergod. Theory Dynam. Syst. 2 (1982), 259–261. (Originally published in Russian in: News of Moscow University 5 (1958), 13–15).Google Scholar
  14. 14.
    D. V. Anosov, On the contribution of N. N. Bogolyubov to the theory of dynamical systems. (Russian) Russ. Math. Surv. 49 (1994), 1–18.Google Scholar
  15. 15.
    H. Anzai, Ergodic skew product transformations on the torus. Osaka J. Math. 3 (1951), 83–99.Google Scholar
  16. 16.
    I. Assani, Multiple recurrence and almost sure convergence for weakly mixing dynamical systems. To appear in: Israel J. Math. Google Scholar
  17. 17.
    J. R. Baxter, On a class of ergodic transformations, PhD Thesis, University of Toronto, 1969.Google Scholar
  18. 18.
    _____, A class of ergodic transformations having simple spectrum. Proc. Am. Math. Soc. 27 (1971), 275–279.Google Scholar
  19. 19.
    K. Berg, Mixing, cyclic approximation and homomorphisms. Unpublished Preprint, University of Maryland, 1975.Google Scholar
  20. 20.
    V. Berthé, N. Chekhova, and S. Ferenczi. Covering numbers, arithmetic and dynamics for rotations and interval exchanges. To appear in: J. d'Analyse Math. Google Scholar
  21. 21.
    F. Blanchard and M. Lemańczyk, Measure-preserving diffeomorphisms with an arbitrary spectral multiplicity. Topolog. Methods in Nonlinear Anal. I (1993), 275–294.Google Scholar
  22. 22.
    J. Bourgain, On the spectral type of Ornstein's class one transformation. Israel J. Math. 84 (1993), 53–63.Google Scholar
  23. 23.
    J. R. Brown, Ergodic theory and topological dynamics. Academic Press, New York, 1976.Google Scholar
  24. 24.
    _____, Doubly stochastic measures and Markov operators. Mich. Math. J. 12 (1965), 367–375.Google Scholar
  25. 25.
    R. V. Chacon, Transformations having continuous spectrum. J. Math. Mech. 16 (1966), 399–415.Google Scholar
  26. 26.
    _____, Roots of automorphisms. J. Math. Mech. 16 (1966).Google Scholar
  27. 27.
    _____, Approximation and spectral multiplicity. Lect. Notes Math. 160 (1970), 18–27.Google Scholar
  28. 28.
    _____, Spectral properties of measure-preserving transformations. In: Proc. Symp. Monterey, Funct. Anal., 1969, Academic Press, New York, 1970, 93–107.Google Scholar
  29. 29.
    G. H. Choe, Weakly mixing interval exchange transformations. Math. Japonica. 38 (1993), 727–734.Google Scholar
  30. 30.
    _____, Spectral types of uniform distribution. Proc. Am. Math. Soc. 120 (1994), 715–722.Google Scholar
  31. 31.
    _____, Ergodicity and irrational rotations. Proc. Royal Irish Acad. 93 (1993), 193–202.Google Scholar
  32. 32.
    J. R. Choksi and M. G. Nadkarni, Baire category in spaces of measure, unitary operators, and transformations. In: Proc. Int. Conf. on Invariant Subspaces and Allied Topics, Narosa Publishers, New Delhi, 1986.Google Scholar
  33. 33.
    _____, The maximal spectral type of a rank one transformation. Canad. Math. Bull. 37 (1994), 29–36.Google Scholar
  34. 34.
    _____, On the question of transformations with simple Lebesgue spectrum. In: Proc. of the Int. Conf. Mumbai, Lie Groups and Ergod. Theory, Narosa Publishers, New Delhi, 1996, 33–58.Google Scholar
  35. 35.
    I. P. Cornfeld, Ya. G. Sinai, and S. V. Fomin, Ergodic Theory. Springer-Verlag, New York, 1982.Google Scholar
  36. 36.
    M. Dekking, The spectrum of dynamical systems arising from substitutions of constant length. Z. Wahr. Verw. Geb. 41 (1978), 221–239.Google Scholar
  37. 37.
    T. Downarowicz and Y. Lacroix, Merit quotients and Morse sequences. Theor. Comput. Sci. 209 (1998), 377–387.Google Scholar
  38. 38.
    E. H. El Abdalaoui, Étude spectral des transformations D'Ornstein. PhD Thesis, Université de Roven, 1998.Google Scholar
  39. 39.
    _____, La singularité mutuelle presque sure du spectre des transformations d'Ornstein. To appear in: Israel J. Math. Google Scholar
  40. 40.
    _____, A large class of Ornstein transformations with mixing property. To appear in: Canad. Math. Bull. Google Scholar
  41. 41.
    S. Ferenczi, Systémes localement de range un. Ann. Inst. H. Poincaré. 20 (1984), 33–51.Google Scholar
  42. 42.
    _____, Systémes de rang un gauche. Ann. Inst. H. Poincaré 21 (1985), 177–186.Google Scholar
  43. 43.
    _____, Systems of finite rank. Colloq. Math. 73 (1997), 35–65.Google Scholar
  44. 44.
    _____, Substitutions and symbolic dynamical systems. Preprint, 1997.Google Scholar
  45. 45.
    S. Ferenczi, J. Kwiatkowski, and C. Mauduit, A density theorem for (multiplicity, rank) pairs. J. Anal. Math. 65 (1995), 45–75.Google Scholar
  46. 46.
    S. Ferenczi and J. Kwiatkowski, Rank and spectral multiplicity. Studia Math. 102 (1992), 121–144.Google Scholar
  47. 47.
    S. Ferenczi, C. Mauduit, and A. Nogueira. Substitution dynamical systems: algebraic characterization of eigenvalues. Ann. Sci. Ecole Normale Superior, 4e série, 29 (1996).Google Scholar
  48. 48.
    K. M. Fraczek, On functions that realize the maximal spectral type. Studia Math. 124 (1997), 1–7.Google Scholar
  49. 49.
    N. Friedman, Introduction to ergodic theory. Van Nostrand Reinhold, New York, 1970.Google Scholar
  50. 50.
    H. Furstenberg, Recurrence in ergodic theory and combinatorial number theory. Princeton University Press, 1981.Google Scholar
  51. 51.
    E. Glasner, B. Host, and D. Rudolph, Simple systems and their higher order self-joinings. Israel J. Math. 78 (1992), 131–142.Google Scholar
  52. 52.
    G. R. Goodson, A. del Junco, M. Lemańczyk, and D. Rudolph, Ergodic transformations conjugate to their inverses by involutions. Ergod. Therory Dynam. Syst. 24 (1995), 95–124.Google Scholar
  53. 53.
    G. R. Goodson and M. Lemańczyk, Transformations conjugate to their inverses have even essential values. Proc. Am. Math. Soc. 124 (1996), 2703–2710.Google Scholar
  54. 54.
    _____, On the rank of a class of bijective substitutions. Studia Math. 96 (1990), 219–230.Google Scholar
  55. 55.
    G. R. Goodson and V. V. Ryzhikov, Conjugations, joinings and direct products of locally rank-one dynamical systems. J. Dynam. Control Syst. 3 (1997), No. 3, 321–341.Google Scholar
  56. 56.
    G. R. Goodson, J. Kwiatkowski, M. Lemańczyk, and P. Liardet, On the multiplicity function of ergodic group extensions of rotations. Studia Math. 102 (1992), 157–174.Google Scholar
  57. 57.
    G. R. Goodson, Approximations and spectral multiplicity of finite skew products. J. London Math. Soc. 14 (1976), 249–259.Google Scholar
  58. 58.
    _____, Functional equations associated with compact group extensions. In: Ergodic Theory and its Connections with Harmonic Analysis. Proc. 1993 Alexandria Conf., 1995, 309–328.Google Scholar
  59. 59.
    _____, The structure of ergodic transformations conjugate to their inverses. In: Ergodic Theory of ℤd-Actions. Proc. Warwick Symp., 1993–94, Cambridge University Press, 1996, 369–386.Google Scholar
  60. 60.
    _____, On the spectral multiplicity of a class of finite rank transformations. Proc. Am. Math. Soc. 93 (1985), 303–306.Google Scholar
  61. 61.
    _____, Skew products in the centralizers of compact abelian group extensions. To appear in: Acta Math. Univ. Com. Google Scholar
  62. 62.
    _____, Joining properties of transformations having simple spectrum. Preprint. Google Scholar
  63. 63.
    _____, The converse of the inverse-conjugacy theorem for unitary operators and ergodic dynamical systems. To appear in: Proc. Am. Math. Soc. Google Scholar
  64. 64.
    I. V. Girsanov, Spectra of dynamical systems generated by Gaussian processes. (Russian) Dokl. Akad. Nauk SSSR. 119 (1958), 851–853.Google Scholar
  65. 65.
    A. L. Gromov, Spectral classification of certain types of unitary operators of substitution with a weight. (Russian) St. Petersburg Math. J. 3 (1992), 997–1021.Google Scholar
  66. 66.
    M. Guenais, Étude spectrale de certains produit gauches en théorie ergodique. PhD Thesis, Université Paris 13, 1997Google Scholar
  67. 67.
    _____, Une majoration de la multiplicité spectrale d'opérateurs associés á des cocycles réguliers. Israel J. Math. 105 (1998), 263–284.Google Scholar
  68. 68.
    _____, Morse cocycles and simple Lebesgue spectrum. To appear in: Ergod. Theory Dynam. Syst. Google Scholar
  69. 69.
    P. R. Halmos, Measurable transformations. Bull. Am. Math. Soc. 55 (1949), 1015–1034.Google Scholar
  70. 70.
    _____, Introduction to Hilbert space. Chelsea Publishing Company, New York, 1951.Google Scholar
  71. 71.
    _____, Lectures on ergodic theory. Chelsea Publishing Company, New York, 1956.Google Scholar
  72. 72.
    P. R. Halmos and J. von Neumann, Operator methods in classical mechanics II. Ann. Math. 43 (1941), 332–350.Google Scholar
  73. 73.
    H. Helson, Analyticity in compact abelian groups. In: Algebra and Analysis, Academic Press, 1975, 1–62.Google Scholar
  74. 74.
    _____, The spectral theorem. Lect. Notes Math. 1227, Springer-Verlag, 1986.Google Scholar
  75. 75.
    _____, Cocyles on the circle. J. Operator Theory 16 (1986), 189–199.Google Scholar
  76. 76.
    H. Helson and W. Parry, Cocycles and Spectra. Arkiv Math. 16 (1978), 195–206.Google Scholar
  77. 77.
    E. Hopf, Complete transitivity and the ergodic principle. Proc. Nat. Acad. Sci. 18 (1932), 204–209.Google Scholar
  78. 78.
    _____, Proof of Gibbs hypothesis. Proc. Nat. Acad. Sci. 18, (1932), 333–340.Google Scholar
  79. 79.
    B. Host, Mixing of all orders and pairwise independent joinings of systems with singular spectrum. Israel J. Math. 76 (1991), 289–298.Google Scholar
  80. 80.
    _____, Valeurs propres des systemes dynamique definis pas des substitutions de longueur variable. Ergod. Theory Dynam. Syst. 6 (1986), 529–540.Google Scholar
  81. 81.
    B. Host, J. F. Méla, and F. Parreau, Analyse Harmonique des Mesures. Astérique, Société Mathématique de France, 135–136 (1986).Google Scholar
  82. 82.
    _____, Nonsingular transformations and spectral analysis of measures. Bull. Soc. Math. France. 119 (1991), 33–90.Google Scholar
  83. 83.
    B. Host and F. Parreau, Homomorphisms entre systemes dynamique definis par substitutions Ergod. Theory Dynam. Syst. (1989).Google Scholar
  84. 84.
    A. Iwanik, Cyclic approximation of ergodic step cocycles over irrational rotations. Acta Univ. Carolinae-Math. Phys. 34 (1993), 59–65.Google Scholar
  85. 85.
    _____, Cyclic approximation of irrational rotations. Proc. Amer. Math. Soc. 121 (1994), 691–695.Google Scholar
  86. 86.
    _____, Approximation by periodic transformations and diophantine approximation of the spectrum. In: Proc. Warwick Symp. 1993–94, Ergodic Theory of ℤd-actions. Cambridge University Press, 1996, 387–401.Google Scholar
  87. 87.
    _____, Anzai skew products with Lebesgue component of infinite multiplicity. Bull. Lond. Math. Soc. 29 (1997), 195–199.Google Scholar
  88. 88.
    A. Iwanik, M. Lemańczyk, and D. Rudolph, Absolutely continuous cocycles over irrational rotations. Israel J. Math. 83 (1993), 73–95.Google Scholar
  89. 89.
    A. del Junco, Transformations with discrete spectrum are stacking transformations. Canad. J. Math. 24 (1976), 836–839.Google Scholar
  90. 90.
    _____, A transformation with simple spectrum which is not rank one. Canad. J. Math. 29 (1977), 655–663.Google Scholar
  91. 91.
    _____, Disjointness of measure-preserving transformations, minimal self-joinings and category. Prog. Math. 10 (1981), 81–89.Google Scholar
  92. 92.
    _____, A family of counter examples in ergodic theory. Israel J. Math. 44 (1983), 160–180.Google Scholar
  93. 93.
    A. del Junco and D. J. Rudolph, On ergodic actions whose self-joinings are graphs. Ergod. Theory Dynam. Syst. 7 (1987), 531–557.Google Scholar
  94. 94.
    _____, A rank one, rigid, simple, prime map. Ergod. Theory Dynam. Syst. 7 (1987), 229–248.Google Scholar
  95. 95.
    A. del Junco and M. Lemańczyk, Generic spectral properties of measure-preserving maps and applications. Proc. Am. Math. Soc. 115 (1992), 725–736.Google Scholar
  96. 96.
    A. del Junco, A. Rahe, and L. Swanson, Chacon's automorphism has minimal self-joinings. J. Anal. Math. 37 (1980), 276–284.Google Scholar
  97. 97.
    S. Kakutani, Ergodic theory of shift transformations. In: Proc. Berkeley Sympos. Math. Stats. Prob. II, Berkeley, California (1967), 405–414.Google Scholar
  98. 98.
    S. Kalikow. Two fold mixing implies three fold mixing for rank one transformations. Ergod. Theory Dynam. Syst. 4 (1984), 237–259.Google Scholar
  99. 99.
    T. Kamae, Spectral properties of automata generating sequences. Unpublished.Google Scholar
  100. 100.
    A. B. Katok, (assisted by E. A. Robinson), Constructions in ergodic theory. Unpublished Lect. Notes, 1986.Google Scholar
  101. 101.
    A. B. Katok and A. M. Stepin, Approximation of ergodic dynamical systems by periodic transformations. (Russian) Sov. Math. Dokl. 7 (1966), 1638–1641.Google Scholar
  102. 102.
    A. B. Katok and A. M. Stepin, Approximation in ergodic theory. (Russian) Russ. Math. Surv. 22 (1967), 77–102.Google Scholar
  103. 103.
    A. B. Katok, Ya. G. Sinai, and A. M. Stepin, Theory of dynamical systems and general transformation groups with invariant measure. J. Sov. Math. 7 (1977), 974–1065.Google Scholar
  104. 104.
    A. B. Katok and E. A. Sataev, Standardness of automorphisms of transpositions of intervals and fluxes on surfaces. Math. Notes Acad. Sci. USSR 20 (1977), 826–831.Google Scholar
  105. 105.
    M. Keane, Generalized Morse sequences. Z. Wahr. Verw. Geb. 10 (1968), 335–353.Google Scholar
  106. 106.
    _____, Interval exchange transformations. Math. Z. 141 (1975), 25–31.Google Scholar
  107. 107.
    H. Keynes and D. Newton, A minimal non-uniquely ergodic interval exchange transformation. Math. Z. 148 (1976), 101–106.Google Scholar
  108. 108.
    I. Klemes, The spectral type of the staircase transformation. Tohuko Math. J. 48 (1996), 247–258.Google Scholar
  109. 109.
    I. Klemes and K. Reinhold, Rank one transformations with singular spectral type. Israel J. Math. 98 (1997), 1–14.Google Scholar
  110. 110.
    J. King, The commutant is the weak closure of the powers, for rank one transformations. Ergod. Theory Dynam. Syst. 6 (1986), 363–384.Google Scholar
  111. 111.
    _____, Joining rank and the structure of finite rank mixing transformations. J. Anal. Math. 51 (1988), 182–227.Google Scholar
  112. 112.
    _____, Ergodic properties where order 4 implies infinite order. Israel J. Math. 80 (1992), 65–86.Google Scholar
  113. 113.
    J. King and J.-P. Thouvenot, A canonical structure theorem for finite joining-rank maps. J. Anal. Math. 51 (1991), 211–230.Google Scholar
  114. 114.
    A. N. Kolmogorov, A new metric invariant of transitive dynamical systems and Lebesgue space automorphisms. (Russian) Dokl. Akad. Nauk USSR 5 (1958), 861–864.Google Scholar
  115. 115.
    B. O. Koopman, Hamiltonian systems and transformations in Hilbert space. Proc. Nat. Acad. Sci. USA 17 (1931), 315–318.Google Scholar
  116. 116.
    B. O. Koopman and J. von Neumann, Dynamical systems of continuous spectra. Proc. Nat. Acad. Sci. USA 18 (1932), 255–263.Google Scholar
  117. 117.
    N. M. Krylov and N. N. Bogolyubov, The result of the operation of statistical measurement of parameters on the motion of conservative dynamical systems over a sufficiently long period of time. (Russian) Zap. Kaf. Mat. Fiz. Inst. Mekh. Akad. Nauk Ukr. SSR 3 (1937), 19–135.Google Scholar
  118. 118.
    A. G. Kuschnirenko, Spectral properties of some dynamical systems with polynomial divergence of orbits. (Russian) Vestn. Mosc. St. Univ. 1 (1974), 101–108.Google Scholar
  119. 119.
    J. Kwiatkowski, Spectral isomorphism of Morse dynamical systems. Bull. Pol. Acad. Sci. 29 (1981), 105–114.Google Scholar
  120. 120.
    J. Kwiatkowski and A. Sikorski, Spectral properties of G-symbolic Morse shifts. Bull. Soc. Math. France 115 (1987), 19–33.Google Scholar
  121. 121.
    J. Kwiatkowski and Y. Lacroix, Multiplicity, rank pairs. J. D'Analyse Math. 71 (1997), 205–235.Google Scholar
  122. 122.
    J. Kwiatkowski (Jr.) and M. Lemańczyk. On the multiplicity function of ergodic group extensions II. Studia Math. 116 (1997), 207–215.Google Scholar
  123. 123.
    Yu. D. Latushkin and A. M. Stepin, Weighted translation operators and linear extensions of dynamical systems. (Russian) Usp. Mat. Nauk. 46 (1991), 85–144.Google Scholar
  124. 124.
    M. Lemańczyk, Introduction to ergodic theory from the point of view of spectral theory. Lect. Notes Tenth Kaisk Math. (Workshop, Geon Ho Choe, Eds.), Korea Adv. Inst. Sci. Technology, Math. Res. Center, Taejon, Korea, 1995.Google Scholar
  125. 125.
    _____, Toeplitz ℤ2-extensions. Ann. Inst. H. Poincaré 24 (1988), 1–43.Google Scholar
  126. 126.
    _____, Canonical quotients of a Lebesgue space. Bull. Pol. Acad. Sci. 3–4 (1988), 29–32.Google Scholar
  127. 127.
    _____, Ergodic compact Abelian group extensions of rotations. Univ. Nicholas Copernicus, Toruń, 1990.Google Scholar
  128. 128.
    M. Lemańczyk and M. K. Mentzen, Compact subgroups in the centralizer of natural quotients of an ergodic group extension of a rotation determine all quotients. Ergod. Theory Dynam. Syst. 10 (1990), 763–776.Google Scholar
  129. 129.
    S. A. Malkin, An example of two metrically non-isomorphic ergodic automorphisms with identical simple spectra. (Russian) Izv. Vyssh. Uchebn. Zaved. Mat. 6 (1968), 69–74.Google Scholar
  130. 130.
    J. Martin, Generalized Morse sequences on n symbols. Proc. Am. Math. Soc. 54 (1976), 379–383.Google Scholar
  131. 131.
    J. Mathew and M. G. Nadkarni, A measure-preserving transformation whose spectrum has a Lebesgue component of multiplicity two. Bull. Lond. Math. Soc. 16 (1984), 402–406.Google Scholar
  132. 132.
    M. Mentzen, Some examples of automorphisms with rank r and simple spectrum. Bull. Pol. Acad. Sci. Math. 35 (1987), 417–424.Google Scholar
  133. 133.
    M. G. Nadkarni, Spectral theory of dynamical systems. Birkhauser-Verlag, Berlin, 1998.Google Scholar
  134. 134.
    _____, Basic Ergodic Theory. Hindustan Book Agency, New Delhi, 1995.Google Scholar
  135. 135.
    D. Newton, Coalescence and the spectrum of automorphisms of a Lebesgue space. Z. Wahr. Verw. Geb. 19 (1971), 117–122.Google Scholar
  136. 136.
    _____, On canonical quotients of ergodic dynamical systems. J. London Math. Soc. 19 (1978), 129–136.Google Scholar
  137. 137.
    J. von Neumann, Zur Operatorenmethode in der klassichen Mechanik. Ann. Math. 33 (1932), 587–642.Google Scholar
  138. 138.
    _____, Proof of the quasi-ergodic hypothesis. Proc. Nat. Acad. Sci. USA 18 (1932), 70–82.Google Scholar
  139. 139.
    D. S. Ornstein, On the root problem in ergodic theory. In: Proc. 6th Berkeley Symp. Math. Stats. Prob., University California Press, Berkeley, 1970, 348–356.Google Scholar
  140. 140.
    V. I. Oseledets, On the spectrum of ergodic automorphisms. Sov. Math. Dokl. 7 (1966), 776–779.Google Scholar
  141. 141.
    _____, Methods of skew products in ergodic theory. Dissertation, Moscow Univ., 1967.Google Scholar
  142. 142.
    _____, An automorphism with simple and continuous spectrum not having the group property. (Russian) Math. Notes 5 (1969), 196–198.Google Scholar
  143. 143.
    _____, Two non-isomorphic dynamical systems with the same simple continuous spectrum. (Russian) Funkt. Anal. i Ego Pril. 5 (1971), 75–79.Google Scholar
  144. 144.
    W. Parry, Compact abelian group extensions of discrete dynamical systems. Z. Wahr. Verw. Geb. 13 (1969), 95–113.Google Scholar
  145. 145.
    _____, Topics in ergodic theory. Cambridge University Press, 1981.Google Scholar
  146. 146.
    _____, Entropy and generators in ergodic theory. Yale Univ. Press, 1966.Google Scholar
  147. 147.
    K. Petersen, Ergodic theory. Cambridge University Press, 1983.Google Scholar
  148. 148.
    A. I. Plesner and V. A. Rokhlin, Spectral theory of linear operators. Usp. Mat. Nauk, (N. S.) 1 (1946), 71–191.Google Scholar
  149. 149.
    M. Queffelec, Substitution dynamical systems: Spectral analysis. Lect. Notes Math. 1294, 1987.Google Scholar
  150. 150.
    _____, Etude spectrale des substitutions de longueur constante. In: Semin. de Theorie des Nombres de Bordeaux, Année 1982–1983, (1983).Google Scholar
  151. 151.
    _____, Etude spectrale des substitutions. C. R. Acad. Sci. Paris 297 (1983), 317–320.Google Scholar
  152. 152.
    _____, Spectral study of automatic and substitutive sequences. In: Beyond Quasicrystal. (F. Axel and D. Gratias, Eds.), Les Houches, 1994, Springer-Verlag, N. Y. (1995), 369–414.Google Scholar
  153. 153.
    G. Rauzy, Echanges d'intervalles et transformations induites. Acta Arith. 34 (1979), 315–328.Google Scholar
  154. 154.
    G. W. Riley, On spectral properties of skew products over irrational rotations. J. London Math. Soc. 17 (1978), 152–160.Google Scholar
  155. 155.
    E. A. Robinson, Ergodic measure-preserving transformations with arbitrary finite spectral multiplicities. Inv. Math. 72 (1983), 299–314.Google Scholar
  156. 156.
    _____, Mixing and spectral multiplicity. Ergod. Theory Dynam. Syst. 5 (1985), 617–624.Google Scholar
  157. 157.
    _____, Transformations with highly nonhomogeneous spectrum of finite multiplicity. Israel J. Math. 56 (1986), 75–88.Google Scholar
  158. 158.
    _____, Spectral multiplicity for nonabelian Morse sequences. Lect. Notes Math. 1342 (1988), 645–652.Google Scholar
  159. 159.
    _____, Nonabelain extensions have non-simple spectrum. Compos. Math. 63 (1988), 155–170.Google Scholar
  160. 160.
    V. A. Rokhlin, New progress in the theory of transformations with invariant measure. (Russian) Russ. Math. Surv. 15 (1960), 1–22.Google Scholar
  161. 161.
    _____, On the endomorphisms of compact commutative groups. (Russian) Izv. Acad. Sci. USSR, Ser. Mat. 13 (1949), 323–340.Google Scholar
  162. 162.
    _____, Metric properties of endomorphisms of compact commutative groups. (Russian) Izv. Acad. Sci. USSR 141 (1961), 1038–1041.Google Scholar
  163. 163.
    _____, Selected topics from the metric theory of dynamical systems. Am. Math. Soc. Transl. 49 (1966), No. 2, 57–128.Google Scholar
  164. 164.
    D. J. Rudolph, An example of a measure-preserving transformation with minimal self-joinings and applications. J. d'Analyse Math. 35 (1979), 97–122.Google Scholar
  165. 165.
    _____, Fundamentals of measurable dynamics. Oxford University Press, 1990.Google Scholar
  166. 166.
    T. de la Rue, Rang des systemés dynamique Gaussiens. Israel J. Math. 104 (1998), 261–283.Google Scholar
  167. 167.
    V. V. Ryzhikov, Stochastic intertwinings and joinings of dynamical systems. Mat. Zametki 52 (1992), 130–140.Google Scholar
  168. 168.
    _____, Joinings, intertwining operators, quotients, and mixing properties of dynamical systems. (Russian) Russ. Acad. Sci. Izv. Math. 42 (1994), 91–114Google Scholar
  169. 169.
    _____, Joinings and multiple mixing of finite rank actions. (Russian) Funkt. Anal. i Ego Prilozh. 26 (1993), 63–78.Google Scholar
  170. 170.
    _____, On asymmetry of cascades. Dynamical Systems and Related Topics. Steklov Inst. Math. Proc., 216 (1997).Google Scholar
  171. 171.
    _____, Polymorphisms, joinings, tensor simplicity of dynamical systems. Funct. Anal. Appl. 31 (1997), 109–118.Google Scholar
  172. 172.
    _____, Transformations having homogeneous spectra. Preprint, 1998.Google Scholar
  173. 173.
    _____, Dynamical systems with homogeneous nonsimple spectrum. (Russian) Preprint, 1998.Google Scholar
  174. 174.
    T. Schwartzbauer, A general method for approximating measure preserving transformations. Proc. Am. Math. Soc. 24 (1970), 643–648.Google Scholar
  175. 175.
    Ya. Sinai, Dynamical systems with countable multiplicity Lebesgue spectrum. Am. Math. Soc. Transl. 39 (1961), No. 2, 83–110.Google Scholar
  176. 176.
    _____, On the properties of spectra of dynamical systems. (Russian) Dokl. Acad. Sci. USSR 150 (1963), 1235–1237.Google Scholar
  177. 177.
    _____, Introduction to ergodic theory. Princeton University Press, 1977.Google Scholar
  178. 178.
    _____, Theory of dynamical systems, Part I, Ergodic theory. Warsaw Univ. Press, 1969.Google Scholar
  179. 179.
    _____, Topics in ergodic theory. Princeton Univ. Press, 1994.Google Scholar
  180. 180.
    M. Smorodinsky, Ergodic theory, entropy. Lect. Notes Math 214, Springer-Verlag, 1971.Google Scholar
  181. 181.
    A. M. Stepin, On spectral properties of ergodic dynamical systems with locally compact time. (Russian) Dokl. Akad. Nauk SSSR 169 (1966), 773–776.Google Scholar
  182. 182.
    _____, Spectrum and approximation of metric automorphisms by periodic transformations. (Russian) Funct. Anal. Appl. 1 (1967), 77–80.Google Scholar
  183. 183.
    _____, Square roots of metric automorphisms. Sov. Math. Dokl. 8 (1967), 1263–1267.Google Scholar
  184. 184.
    _____ Applications of periodic approximations for dynamical systems to spectral theory. Ph. D. Thesis, Moscow Univ., 1968.Google Scholar
  185. 185.
    _____, Spectral properties of generic dynamical systems. Math. USSR Izv. 50 (1986), 159–192.Google Scholar
  186. 186.
    _____, Les spectres des systems dynamique. Actes, Congress Intern. Math. 2 (1970), 941–946.Google Scholar
  187. 187.
    _____, The relation between approximation and spectral properties of metric automorphisms. Mat. Zametki 13, (1973), 403–409.Google Scholar
  188. 188.
    _____, Approximations of groups and group actions, the Cayley topology. In: Proc. Warwick Sympos. Ergodic Theory of ℤd-actions (1993–94), Cambridge University Press, 1996, 475–484.Google Scholar
  189. 189.
    A. M. Stepin and Ya. B. Vorobets, Isospectrality and projective geometries. Preprint, Erwin Schroedinger Inst., N530, 1998.Google Scholar
  190. 190.
    J.-P. Thouvenot, Some properties and applications of joinings in ergodic theory. In: Proc. Alexandria Conf., Ergodic Theory and its Connections with Harmonic Analysis, (1993), Cambridge University Press, 1995, 207–238.Google Scholar
  191. 191.
    A. M. Vershik, Spectral and metric isomorphism of some normal dynamical systems. Sov. Math. Dokl. 3 (1962), 693–696.Google Scholar
  192. 192.
    _____, On the theory of normal dynamical systems. Sov. Math. Dokl. 3 (1962), 625–628.Google Scholar
  193. 193.
    _____, Multivalued mappings with invariant measures (polymorphisms) and Markov operators. (Russian) Azp. Nautchn. Sem. LOMI. 72 (1977), 26–62.Google Scholar
  194. 194.
    _____, Polymorphisms. J. Sov. Math. 23 (1983), 2243–2366.Google Scholar
  195. 195.
    P. Walters, An Introduction to Ergodic Theory. Springer-Verlag, New York, 1982.Google Scholar
  196. 196.
    W. A. Veech, Strict ergodicity in zero dimensional dynamical systems and the Kronecker-Weyl theorem mod 2. Trans. Am. Math. Soc. 140 (1969), 1–33.Google Scholar
  197. 197.
    _____, Finite group extensions of irrational rotations. Israel J. Math. 21 (1975), 240–259.Google Scholar
  198. 198.
    _____, The metric theory of interval exchange transformations I, II, III. Am. J. Math. 106 (1984), 1331–1421.Google Scholar
  199. 199.
    _____, A criterion for a process to be prime. Monatshefte Math. 94 (1982), 335–341.Google Scholar
  200. 200.
    S. A. Yuzvinskii, Metric automorphisms with a simple spectrum. Sov. Math. Dokl. 8 (1967), 243–245.Google Scholar

Copyright information

© Plenum Publishing Corporation 1999

Authors and Affiliations

  • G.R. Goodson
    • 1
  1. 1.Department of MathematicsTowson UniversityTowsonUSA

Personalised recommendations