Mathematical Geology

, Volume 30, Issue 2, pp 129–161 | Cite as

Application of Correspondence Analysis in the Assessment of Groundwater Chemistry

  • Fernando António Leal Pacheco


Correspondence Analysis (CA) was used to determine the sources and processes that may explain the variation observed in datasets of groundwater analyses. The following method was adopted: (1) based on the observation of “sympathies” and “antipathies” between loadings signs, correspondence factors were represented by parameters with some pertinent geochemical meaning: (2) the relation between factors and parameters then was checked by Multiple Linear Regression (MLR) where factors acted as independent variables and parameters as dependent variables. Sample scores of the selected parameters gave the ability to separate polluted from nonpolluted waters, identify areas where pollution is dominated by agriculture and areas where contamination is controlled by domestic effluents, and describe weathering and agricultural activities in the sampled area. The practical example presented here anticipates the impact of agriculture and urban pollution on the chemistry of 160 water samples collected in a granitoid area at central Portugal (Fundão).

correspondence analysis multiple linear regression hydrogeochemistry weathering pollution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alencoão, A. M. P., Sousa Oliveira, A., and Pacheco, F. A. L., 1996, Seasonal variations on systems of triple influence, in Soares, A., Hernandez, J. G., and Froidevaux, R. (eds.), GEOENV I-Geostatistics for environmental applications: Kluwer Academic Publishers, The Netherlands, p. 235–246.Google Scholar
  2. Appelo, C. A. J., and Postma, D., 1993, Geochemistry, groundwater and pollution: Balkema, Rotterdam, 536 p.Google Scholar
  3. Barnes, L., and O'Neil, J. R., 1969, The relationship between fluids in some fresh Alpine-type ultramafics and possible modern serpentinization, western United States: Geol. Soc. America Bull., v. 80,no. 10, p. 1947–1960.Google Scholar
  4. Benzecri, J. P., 1973, L'analyse des données, v. 2—L'analyse des correspondences: Dunod, Paris, 578 p.Google Scholar
  5. Benzecri, J. P., 1977, Histoire et prehistoire de l'analyse des données, v. 5-L'analyse des correspondences: Cahiers de l'analyse des données, v. 2, p. 9–40.Google Scholar
  6. Cattell, R. B., 1966, The scree test for the number of factors: Mult. Behav. Res., v. 1, p. 245–276.Google Scholar
  7. Costa, C. V., Pereira, L. G., Portugal Ferreira, M. R., and Santos Oliveira, J. M., 1971, Distribuição de oligoelementos nas rochas e solos da região do Fundão: Memórias e Noticias (Coimbra Univ.), v. 71, p. 1–37.Google Scholar
  8. Davis, J. C., 1986, Statistics and data analysis in geology: John Wiley & Sons, New York, 646 p.Google Scholar
  9. Drever, J. I., 1988, The geochemistry of natural waters: Prentice Hall, New Jersey, 437 p.Google Scholar
  10. Dougenik, J. A., and Sheenan, D. E., 1976, SYMAP user's reference manual: Univ. Massachusetts, Tech. Rept., 170 p.Google Scholar
  11. Frapporti, G., 1994, Geochemical and statistical interpretation of the dutch national ground water quality monitoring network: unpubl. doctoral dissertation, Utrecht Univ., 119 p.Google Scholar
  12. Garrels, R. M., 1967, Genesis of some ground waters from igeous rocks, in Abelson, P. H., (ed.), Researches in Geochemistry: John Wiley & Sons, New York, v. 2, p. 405–420.Google Scholar
  13. Garrels, R. M., and MacKenzie, F. T., 1967, Origin of the chemical compositions of some springs and lakes, in Gould, R. F., (ed.), Equilibrium Concepts in Natural Water Systems, Advances in Chemistry Series 67, Am. Chem. Soc., Washington, p. 222–242.Google Scholar
  14. Greenacre, M. J., and Hastie, T., 1987, The geometric interpretation of correspondence analysis: Jour. Am. Stat. Assoc., v. 82, p. 437–447.Google Scholar
  15. Heiser, W. J., and Meulman, J., 1983, Analyzing rectangular tables by joint and constrained multidimensional scaling: Jour. Econometrics, v. 22, p. 139–167.Google Scholar
  16. Jackson, J. E., 1991, A user's guide to principal components: John Wiley & Sons, New York, 569 p.Google Scholar
  17. Jobson, J. D., 1991, Applied multivariate data analysis, v. 1—Regression and experimental design: Springer-Verlag, New York, 621 p.Google Scholar
  18. Jöreskog, K. G., Klovan, J. E., and Reyment, R. A., 1976, Geological factor analysis: Elsevier, Amsterdam, 178 p.Google Scholar
  19. Klovan, J. E., 1975, R-and Q-mode factor analysis, in McCamon, R. B., (ed.), Concepts in geostatistics: Springer-Verlag, New York, p. 21–69.Google Scholar
  20. Likens, G. E., Bormann, F. H., Pierce, R. S., Eaton, J. S., and Johnson, N. M., 1977, Biogeochemistry of a forested ecosystem: Springer-Verlag, New York, 135 p.Google Scholar
  21. Matthess, G., 1982, The properties of groundwater: John Wiley & Sons, New York, 405 p.Google Scholar
  22. Miller, W. R., and Drever, J. I., 1977a, Water chemistry of a stream following a storm, Absaroka Mountains, Wyoming: Geol. Soc. America, Bull., v. 88,no. 2, p. 286–290.Google Scholar
  23. Miller, W. R., and Drever, J. I., 1977b, Chemical weathering and related controls on surface water chemistry in the Absaroka Mountains, Wyoming: Geochim. Cosmochim. Acta, v. 41,no. 11, p. 1693–1702.Google Scholar
  24. Pacheco, F. A. L., 1995, Interacção água rocha em unidades do Grupo Peritransmontano (Serra da Padrela, Vila Pouca de Aguiar): unpubl. masters thesis, Trás-os-Montes e Alto Douro Univ., Vila Real, Portugal, 123 p.Google Scholar
  25. Pacheco, F. A. L., 1998, Finding the number of natural clusters in groundwater data sets using the concept of equivalence class: Computers & Geosciences, in press.Google Scholar
  26. Pacheco, F. A. L., and Portugal Ferreira, M. R., 1996, Sistemas hidroquímicos com dupla influência, sua definição e interpretação no contexto da análise de correspondências: In 3° Congresso da Água/VII Silubesa, Associação Portuguesa de Recursos Hidricos (APRH), LNEC, Lisbon, v. 3, p. 177–185.Google Scholar
  27. Pacheco, F. A. L., and Van der Weijden, C. H., 1996, Contributions of water-rock interactions to the composition of groundwater in areas with sizeable anthropogenic input. A case study of the waters of the Fundão area, central Portugal: Water Resources Res., v. 32,no. 12, p. 3553–3570.Google Scholar
  28. Pearson, K., 1901, On lines and planes of closest fit to systems of points in space: Phil. Mag., Series B, v. 2, p. 559–572.Google Scholar
  29. Portugal Ferreira, M. R., 1982, A magmatic arc in the Iberian Segment of the Hercynian Chain: I-the northwest-southeast lineament between Oporto (Portugal) and Zarza Ia Major (Spain): Memórias e Notícias (Coimbra Univ.), v. 94, p. 31–50.Google Scholar
  30. Portugal Ferreira, M. R., Ivo Alves, E., and Regêncio Macedo, C. A., 1985, A zonalidade interna de um plutonito, estruturas condicionantes e idades de evolução (plutonito do Fundão, Portugal central): Memórias e Notícias (Coimbra Univ.), v. 99, p. 167–186.Google Scholar
  31. Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T., 1989, Numerical recipes in Pascal: Cambridge Univ. Press, Cambridge, 759 p.Google Scholar
  32. Reeder, S. W., Hitchon, B., and Levinson, A. A., 1972, Hydrogeochemistry of the surface waters of the Mackenzie river drainage basin, Canada. Factors controlling inorganic composition: Geochim. Cosmochim. Acta, v. 36,no. 8, p. 826–865.Google Scholar
  33. Sousa Oliveira, A., 1995, A hidrogeologia da região de Pedras Salgadas: unpubl. masters thesis, Trás-os-Montes e Alto Douro Univ., Vila Real, Portugal, 230 p.Google Scholar
  34. Spearman, C., 1904, General intelligence, objectively determined and measured: Am. Jour. Psychol., v. 15, p. 201–293.Google Scholar
  35. Thompson, G. H., 1934, Hotelling's method modified to give Spearman's g: Jour. Educ. Psych., v. 25, p. 366–374.Google Scholar
  36. Van der Heijden, P. G. M., de Falguerolles, A., and Deleeuw, J., 1989, A combined approach to contingency table analysis using correspondence analysis and log-linear analysis: Appl. Stat., v. 38, p. 249–292.Google Scholar
  37. Van der Weijden, C. H., Oosterom, M. G., Bril, J., Walen, C. G., Vriend, S. P., and Zuurdeeg, B. W., 1983, Geochemical controls of transport and deposition of uranium from solution. Case study: Fundão, Portugal: Utrecht Univ., Institute of Earth Sciences, Department of Geochemistry, Tech. Rept., EC contract 007.79.3 EXU NL, unpaginated.Google Scholar
  38. Zobrist, J., and Stumm, W., 1981, Chemical dynamics of the Rhine catchment area in Switzerland. Estimation of the “pristine” Rhine river input to the ocean: Proc. review and workshop on river inputs to ocean systems, Food and agriculture organization, Rome, preprint, unpaginated.Google Scholar

Copyright information

© International Association for Mathematical Geology 1998

Authors and Affiliations

  • Fernando António Leal Pacheco
    • 1
  1. 1.Department of GeologyTrás-os-Montes e Alto Douro UniversityVila RealPortugal

Personalised recommendations