Functional Analysis and Its Applications

, Volume 36, Issue 4, pp 253–266 | Cite as

Elliptic Families of Solutions of the Kadomtsev--Petviashvili Equation and the Field Elliptic Calogero--Moser System

  • A. A. Akhmetshin
  • I. M. Krichever
  • Yu. S. Volvovski


We present a Lax pair for the field elliptic Calogero-Moser system and establish a connection between this system and the Kadomtsev-Petviashvili equation. Namely, we consider elliptic families of solutions of the KP equation such that their poles satisfy a constraint of being balanced. We show that the dynamics of these poles is described by a reduction of the field elliptic CM system.

We construct a wide class of solutions to the field elliptic CM system by showing that any N-fold branched cover of an elliptic curve gives rise to an elliptic family of solutions of the KP equation with balanced poles.

KP equation, Calogero--Moser system, Lax pair 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Airault, H. McKean, and J. Moser, “Rational and elliptic solutions of the Korteweg-de Vries equation and related many-body problem,” Commun. Pure Appl. Math., 30, No.1, 95–148 (1977).Google Scholar
  2. 2.
    O. Babelon, E. Billey, I. Krichever, and M. Talon, “Spin generalisation of the Calogero-Moser system and the matrix KP equation,” In: Topics in Topology and Mathematical Physics, Amer. Math. Soc. Transl., Ser. 2, Vol. 170, Amer. Math. Soc., Providence, 1995, pp. 83–119.Google Scholar
  3. 3.
    H. Bateman and A. Erdelyi, Higher Transcendental Functions, Vol. I I, McGraw-Hill, 1953.Google Scholar
  4. 4.
    F. Calogero, “Exactly solvable one-dimensional many-body systems,” Lett. Nuo vo Cimento (2), 13, No.11, 411–416 (1975).Google Scholar
  5. 5.
    I. Krichever, “An algebraic-geometric construction of the Zakharov-Shabat equation and their periodic solutions,” Dokl. Ak ad. Nauk USSR, 227, No.2, 291–294 (1976).Google Scholar
  6. 6.
    I. Krichever, “The integration of nonlinear equation with the help of algebraic-geometrical methods,” Funkts. Anal. Prilozhen., 11, No.1, 15–31 (1977).Google Scholar
  7. 7.
    I. Krichever, “Elliptic solutions of Kadomtsev-Petviashvili equations and integrable systems of particles,” Funkts. Anal. Prilozhen., 14, No.1, 45–54 (1980).Google Scholar
  8. 8.
    I. Krichever, “Elliptic solutions to difference non-linear equations and nested Bethe ansatz equations,” In: Calogero-Moser-Sutherland models (Montreal, QC, 1997), CRM Ser. Math. Phys., Springer-Verlag, New York, 2000, pp. 249–271.Google Scholar
  9. 9.
    I. Krichever, “Elliptic analog of the Toda lattice,” Internat. Math. Res. Notices, No. 8, 383–412 (2000).Google Scholar
  10. 10.
    I. Krichever, Vector Bundles and Lax Equations on Algebraic Curves, hep-th/0108110 (2001).Google Scholar
  11. 11.
    I. Krichever, O. Lipan, P. Wiegmann, and A. Zabrodin, “Quantum integrable models and discrete classical Hirota equations,” Comm. Math. Phys., 188, No.2, 267–304 (1997).Google Scholar
  12. 12.
    I. Krichever and A. Zabrodin, “Spin generalisation of the Ruijsenaars-Schneider model, the nonabelian two-dimensionalized Toda lattice, and representations of the Sklyanin algebra,” Usp. Mat. Nauk, 50, No.6, 3–56 (1995).Google Scholar
  13. 13.
    A. Levin, M. Olshanetsky, and A. Zotov, Hitchin Systems - Symplectic Maps and Two-Dimensional Version, arXiv:nlin. SI/0110045 (2001).Google Scholar
  14. 14.
    A. Gorsky and N. Nekrasov, Elliptic Calogero-Moser System from Two-Dimensional Current Algebra, hep-th/9401021.Google Scholar
  15. 15.
    N. Nekrasov, “Holomorphic bundles and many-body systems,” Comm. Math. Ph ys., 180, No.3, 587–603 (1996).Google Scholar
  16. 16.
    A. M. Perelomov, Integrable Systems of ClassicalMechanics and Lie Algebras, Vol. I, Birkhauser Verlag, Basel, 1990.Google Scholar
  17. 17.
    E. Markman, “Spectral curves and integrable systems,” Compositio Math., 93, 255–290 (1994).Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • A. A. Akhmetshin
  • I. M. Krichever
  • Yu. S. Volvovski

There are no affiliations available

Personalised recommendations