Advertisement

Applications of Mathematics

, Volume 47, Issue 1, pp 25–44 | Cite as

Post-Buckling Range of Plates in Axial Compression with Uncertain Initial Geometric Imperfections

  • Ivan Hlavacek
Article

Abstract

The method of reliable solutions alias the worst scenario method is applied to the problem of von Karman equations with uncertain initial deflection. Assuming two-mode initial and total deflections and using Galerkin approximations, the analysis leads to a system of two nonlinear algebraic equations with one or two uncertain parameters-amplitudes of initial deflections. Numerical examples involve (i) minimization of lower buckling loads and (ii) maximization of the maximal mean reduced stress.

elastic plates Karman equations uncertain initial deflections worst scenario 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Y. Ben-Haim, I. E. Elishakoff: Convex Models of Uncertainties in Applied Mechanics. Studies in Appl. Mech. 25. Elsevier, Amsterdam, 1990.Google Scholar
  2. [2]
    V. M. Broude: Limit States of Steel Beams. Nauka, Moskva, 1953. (In Russian.)Google Scholar
  3. [3]
    I. E. Elishakoff, G. Q. Cai and J.H. Starnes,Jr.: Non-linear buckling of a column with initial imperfection via stochastic and non-stochastic convex models. Int. J. Non-Linear Mechanics 29 (1994), 71–82.Google Scholar
  4. [4]
    I. Hlavá?ek: Einfluss der Form der Anfangskrümmung auf das Ausbeulen der gedrücktenrechteckigen Platte. Acta Technica ČSAV (1962), 174–206. (In German.)Google Scholar
  5. [5]
    I. Hlavá?ek: Reliable solution of elliptic boundary value problems with respect to uncertain data. Proc. 2nd WCNA, Nonlin. Anal., Theory, Meth. & Appls. 30 (1997), 3879–3890.Google Scholar
  6. [6]
    W. J. Supple: Changes of wave-form of plates in the post-buckling range. Int. J. Solids Structures 6 (1970), 1243–1258.Google Scholar
  7. [7]
    S. P. Timoshenko, J. M. Gere: Theory of Elastic Stability. 2nd edn., McGraw Hill, Burr Ridge, 1961.Google Scholar
  8. [8]
    A. S. Volmir: Stability of Deformable Systems. Nauka, Moskva, 1967, 2nd edn. (In Russian.)Google Scholar

Copyright information

© Mathematical Institute, Academy of Sciences of Czech Republic 2002

Authors and Affiliations

  • Ivan Hlavacek
    • 1
  1. 1.Mathematical InstituteAcademy of Sciences of the Czech RepublicPraha 1Czech Republic

Personalised recommendations