Journal of Nanoparticle Research

, Volume 4, Issue 5, pp 433–438

Synthesis of Nanocrystalline Ceria Particles for High Temperature Oxidation Resistant Coating

Article

Abstract

Cerium oxide has been investigated to be an effective coating material for high temperature applications for various alumina- and chromia-forming alloys. The present study investigates the use of microemulsion method to obtain monodispersed, non-agglomerated nanocrystalline ceria particles in the range of 5 nm using sodium bis(2-ethylhexyl) sulphosuccinate (AOT) as a surfactant. Furthermore, the use of non-agglomerated nanocrystalline ceria particles to develop improved high temperature oxidation resistant coatings on AISI 304-grade stainless steel was investigated. It was found that non-agglomerated nanocrystalline ceria particles were more effective in improving the oxidation resistance than the agglomerated nanocrystalline particles.

nanocrystalline ceria microemulsion reverse micelle AOT high temperature oxidation agglomeration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aguilar C., J.C. Colson & J.P. Larpin, 1992. Ceria coating effect on the high temperature corrosion behavior of the classical AISI 304 stainless steel. Memoires et Etudes Scientifiques de la Revue de Metallurgie 89, 447-458.Google Scholar
  2. Andreievski R.A., 1994. Review: Nanocrystalline high melting point compact based materials. J. Mater. Sci. 29, 614-631.Google Scholar
  3. Barr T.L. & S. Seal, 1995. On the nature of the use of adventitious carbon as binding energy standard. J. Vacuum Sci. Technol. 13A, 1239-1246.Google Scholar
  4. Czerwinski F. & J.A. Szpunar, 1997. The nanocrystalline ceria sol-gel coating for high temperature applications. J. Sol-Gel Sci. Technol. 9, 103-114.Google Scholar
  5. Czerwinski F. & W.W. Smeltzer, 1993. The growth and structure of thin oxide films on ceria-sol-coated nickel. Oxidat. Metals 40, 503-527.Google Scholar
  6. Djuricic B. & S. Pickering, 1999. Nanostructured cerium oxide: Preparation and properties of weakly-agglomerated powders. J. Eur. Ceramic Soc. 19, 1925-1934.Google Scholar
  7. Faeder J. & B.M. Ladanyi, 2000. Molecular dynamics simulations of the interior of aqueous reverse micelles. J. Phys. Chem. B 104, 1033-1046.Google Scholar
  8. Konstantinov K., I. Stambolova, P. Peshev, B. Darriet & S. Vassilev, 2000. Preparation of ceria films by spray pyrolysis method. Int. J. Inorg. Mater. 2, 277-280.Google Scholar
  9. Li Meishuan, Zhou Longjiang & Shen Jianian, 1996. Effect of superficially applied ceria on oxidation behavior of 20CrNi4VA steel. Corros. Sci. Protect. Technol. 8, 276-280.Google Scholar
  10. Mayo M.J., 1993. Synthesis and applications of nanocrystalline ceramics. Mater. Des. 14, 323-329.Google Scholar
  11. Nazeri A., P.P. Trzaskoma-Paulette & D. Bauer, 1997. Synthesis and properties of cerium and titanium oxide thin coatings for corrosion protection of 304 stainless steel. J. Sol-Gel Sci. Technol. 10, 317-331.Google Scholar
  12. Papaiacovou P., R.J. Hussey, D.F. Mitchell & M.J. Graham, 1990. The effect of CeO2 coatings on the oxidation behavior of Fe-20Cr alloys in O2 at 1173 K. Corros. Sci. 30, 451-460.Google Scholar
  13. Reidar H., 2002. On the influence of sol-gel derived CeO2 coatings on high-temperature oxidation of Co, Ni and Cu. Corros. Sci. 44, 1569-1582.Google Scholar
  14. Roure S., F. Czerwinski & A. Petric, 1994. Influence of CeO2-coating on the high-temperature oxidation of chromium. Oxid. Metals 42, 75-102.Google Scholar
  15. Roy S.K., S. Seal, S.K. Bose & M. Caillet, 1993. Effect of superficially applied cerium oxide coating on the non-isothermal oxidation of AISI321 grade stainless steel. J. Mater. Sci. Lett. 12, 249-251.Google Scholar
  16. Seal S., B. Nardelli, A. Kale & V. Desai, 1999. Role of surface chemistry on the nature if passive oxide film growth on Fe-Cr (low & high) alloys at high temperatures. J. Vacuum Sci. Technol. 17A, 1109-1115.Google Scholar
  17. Seal S., S.C. Kuiry & L.A. Bracho, 2001. Studies on the surface chemistry of oxide films formed on IN-738LC superalloy at elevated temperatures in dry air. Oxidat. Metals 56, 583-603.Google Scholar
  18. Shi Shuo, Lu Runhua, Wang Taotao, Sun Haiying & Wang Hanqing, 1999. Synthesis of CeO2 nanoparticles in w/o microemulsion. J. Dispersion Sci. Technol. 20, 1247-1262.Google Scholar
  19. Takeshi Kawai, Yuki Usui & Kijiro Kon-No, 1999. Synthesis and growth mechanism of GeO2 particles inAOT reversed micelles. Colloids Surf. 149, 39-47.Google Scholar
  20. Toshiyuki Masui, Kazuyasu Fujiwara, Yumin Peng, Takao Sakata, Ken-ichi Machida, Hirotaro Mori & Gin-ya Adachi, 1998. Chracterization and catalytic properties of CeO2-ZrO2 ultrafine particles prepared by microemulsion method. J. Alloys Comp. 269, 116-122.Google Scholar
  21. Wang Chengyun, Qian Yitai, Xie Yi, Wang Changsui, Yang Li & Zhao Guiwen, 1996. A novel method to prepare nanocrystalline (7 nm) ceria. Mater. Sci. Eng. B39, 160-162.Google Scholar
  22. Wang Chengyun, Zhang Weiya & Qian Yitai, 2002. Preparation of nanocrystalline ceria in CCl4. Mater. Sci. Eng. B94, 170-175.Google Scholar
  23. Zhonghua Wu, R.E. Benfield, Lin Guo Huanjun Li, Qinglin Yang, Didier Grandjean, Quinshu Li & Hesun Zhu, 2001. Cerium oxide nanoparticles coated by surfactant sodium bis(2-ethylhexyl) sulphosuccinate (AOT): Local atomic structures and X-ray absorption spectroscopic studies. J. Phys.: Condens. Matter 13, 5269-5283.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  1. 1.Advanced Materials Processing and Analysis Center (AMPAC), and Department of Mechanical, Materials and Aerospace Engineering (MMAE), Surface Engineering and Nanotechnology Facility (SNF)University of Central FloridaOrlandoUSA

Personalised recommendations