Journal of Nanoparticle Research

, Volume 4, Issue 5, pp 395–403

Imaging {Au0-PAMAM} Gold-dendrimer Nanocomposites in Cells

  • Anna Bielinska
  • Jonathan D. Eichman
  • Inhan Lee
  • James R. BakerJr.
  • Lajos Balogh


Dendrimer nanocomposites (DNC) are hybrid nanoparticles formed by the dispersion and immobilization of guest atoms or small clusters in dendritic polymer matrices. They have a great potential in biomedical applications due to their controlled composition, predetermined size, shape and variable surface functionalities. In this work, d=5–25 nm spherical nanoparticles composed of gold and poly(amidoamine) (PAMAM) dendrimers have been selected to demonstrate this nanoparticle based concept. {Au(0)n-PAMAM} gold dendrimer nanocomposites with a well-defined size were synthesized and imaged by transmission electron microscopy both in vitro and in vivo. DNC have also the potential to be used for imaging and drug delivery vehicles either by utilizing bioactive guests or through the incorporation of radioactive isotopes, such as Au-198.

nanocomposites dendrimers imaging gene transfer drug delivery gold/dendrimer composite 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Balogh L., R. Valluzzi, K.S. Laverdure, S.P. Gido, G.L. Hagnauer & D.A. Tomalia, 1999. J. Nanopart. Res. 1(3), 353.Google Scholar
  2. Balogh L., D.R. Swanson, R. Spindler & D.A. Tomalia, 1997. Formation and characterization of dendrimer-based water soluble inorganic nanocomposites. Proceedings of ACS PMSE (77), 118.Google Scholar
  3. Beck Tan N., L. Balogh & S. Trevino, 1997. Structure of metalloorganic nanocomposites produced from dendrimer complexes. Proceedings of ACS PMSE (77), 120.Google Scholar
  4. Bhalgat M.K. & J.C. Roberts, 2000. Eur. Polym. J. 36(3), 647-651.Google Scholar
  5. Bielinska A.U., J.F. Kukowska-Latallo, J. Johnson, D.A. Tomalia & J.R. Baker, Jr., 1996. Nucleic Acids Res. 24, 2176.Google Scholar
  6. Bielinska A.U., J.F. Kukowska-Latallo & J.R. Baker, Jr., 1997. Biochim. Biophys. Acta 1353(2), 180.Google Scholar
  7. Bielinska A.U., C. Chen, J. Johnson & J.R. Baker, Jr., 1999. Bioconjug. Chem. 10, 843-850.Google Scholar
  8. Bonkhoff H. et al., 1993. Hum. Pathol. 24, 243-248.Google Scholar
  9. Chen W., N.J. Turro & D.A. Tomalia, 2000. Langmuir 16, 15.Google Scholar
  10. de Gennes P.G. & H. Hervet, 1983. J. Phys. Lett. (Paris) 44(9), 351.Google Scholar
  11. Duncan R. et al., 1998. Polym. Prep., Am. Chem. Soc. Div. Polym. Chem. 39, 180.Google Scholar
  12. Esumi K., A. Suzuki, N. Aihara, K. Usui & K. Torigoe, 1998. Langmuir 14(12), 3157.Google Scholar
  13. Esumi K., A. Suzuki, A. Yamahira & K. Torigoe, 2000. Langmuir 16, 2604.Google Scholar
  14. Garcia M.E., L.A. Baker & R.M. Crooks, 1999. Anal. Chem. 71, 256.Google Scholar
  15. Gröhn F., B.J. Bauer, Y.A. Akpalu, C.L. Jackson & E.J. Amis, 2000. Macromolecules 33(16), 6042.Google Scholar
  16. Hawker C.J. & J.M.J. Frechet, 1990. J. Am. Chem. Soc. 112, 7638.Google Scholar
  17. He J.-A., R. Valluzzi, K. Yang, T. Dolukhanyan, C.M. Sung, J. Kumar, S.K. Tripathy, L. Samuelson, L. Balogh & D.A. Tomalia, 1999. Chem. Mater. 11, 3268.Google Scholar
  18. Jackson C.L., H.D. Chanzy, F.P. Booy, B.J. Drake, D.A. Tomalia, B.J. Bauer & E.J. Amis, 1998. Macromolecules 31, 6259-6265.Google Scholar
  19. Kim Y.K. & S.C. Zimmerman, 1998. Curr. Opin. Chem. Biol. 2(6), 733-742.Google Scholar
  20. Kobayashi H., N. Sato, S. Kawamoto, T. Saga, A. Hiraga, T.L. Haque, T. Ishimori, J. Konishi, K. Togashi & M.W. Brechbiel, 2001. Bioconjug. Chem. 12, 100-107.Google Scholar
  21. Kukowska-Latallo J.F., A.U. Bielinska, J. Johnson, R. Spindler, D.A. Tomalia & J.R. Baker, Jr., 1996. Proc. Natl. Acad. Sci. 93, 4897.Google Scholar
  22. Mansfield M.L. & L.I. Klushin, 1993. Macromolecules 26, 4262.Google Scholar
  23. Margerum L.D., B.K. Campion, M. Koo, N. Shargill, J. Lai, A. Marumoto & P.C. Sontum, 1997. J. Alloys Compd. 249(1-2), 185.Google Scholar
  24. Muggia F.M., 1999. Clin. Cancer Res. 5, 7.Google Scholar
  25. Newkome G.R., Z.-Q. Yao, G.R. Baker & V.K. Gupta, 1985. J. Org. Chem. 50, 2003.Google Scholar
  26. Ottaviani M.F., B. Sacchi, N.J. Turro, W. Chen, S. Jockusch & D.A. Tomalia, 1999. Macromolecules 32, 2275.Google Scholar
  27. Qin L., D.R. Pahud, Y. Ding, A.U. Bielinska, J.F. Kukowska-Latallo, J.R. Baker Jr., & J.S. Bromberg, 1998. Hum. Gene Ther. 9(4), 553-560.Google Scholar
  28. Roessler B.J., A.U. Bielinska, K. Janczak, I. Lee & J.R. Baker Jr., 2001. Biochem. Biophys. Commun. 283, 124-129.Google Scholar
  29. D.A. Tomalia, J.R. Dewald, M.J. Hall, S.J. Martin & P.B. Smith, 1984. First SPSJ Int. Polym. Conference, Kyoto, Japan, August, 65.Google Scholar
  30. Tomalia D.A., H. Baker, J.Dewald, M. Hall, M. Kallos, S. Martin, J. Roeck, J. Ryder & P. Smith, 1985. Polym. J. (Tokyo) 17, 117-132.Google Scholar
  31. Tomalia D.A. & P. Dvornic, 1996. In: Salamone J.C. ed. Polymeric Materials Encyclopedia. Vol. 3(D-E) CRC Press, p. 1814.Google Scholar
  32. Tomalia D.A., A.M. Naylor & W.A. Goddard III, 1990. Angew. Chem. Int. Ed. Engl. 29, 138.Google Scholar
  33. Wilbur D.S. et al., 1998. Bioconjug. Chem. 9, 813-825.Google Scholar
  34. Wu C., M.W. Brechbiel, R.W. Kozak & O.A. Gansow, 1994. Bioorg. Med. Chem. Lett. 4(3), 449.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Anna Bielinska
    • 1
  • Jonathan D. Eichman
    • 1
  • Inhan Lee
    • 1
  • James R. BakerJr.
    • 1
  • Lajos Balogh
    • 1
  1. 1.Center for Biologic NanotechnologyUniversity of MichiganAnn ArborUSA

Personalised recommendations