Russian Journal of Genetics

, Volume 38, Issue 12, pp 1397–1403 | Cite as

Molecular Analysis of Leaf Rust-Resistant Introgression Lines Obtained by Crossing of Hexaploid Wheat Triticum aestivum with Tetraploid Wheat Triticum timopheevii

  • I. N. Leonova
  • M. S. Röder
  • E. B. Budashkina
  • N. P. Kalinina
  • E. A. Salina


Twenty-four Triticum aestivum×T. timopheevii hybrid lines developed on the basis of five varieties of common wheat and resistant to leaf rust were analyzed by the use of microsatellite markers specific for hexaploid wheat T. aestivum. Investigation of intervarietal polymorphism of the markers showed that the number of alleles per locus ranged from 1 to 4, depending on the marker (2.5 on average). InT. timopheevii, amplification fragments are produced by 80, 55, and 30% of primers specific to the A, B, and D common wheat genomes, respectively. Microsatellite analysis revealed two major areas of introgression of the T. timopheevii genome: chromosomes of homoeological groups 2 and 5. Translocations were detected in the 2A and 2B chromosomes simultaneously in 11 lines of 24. The length of the translocated fragment in the 2B chromosome was virtually identical in all hybrid lines and did not depend on the parental wheat variety. In 15 lines developed on the basis of the Saratovskaya-29, Irtyshanka, and Tselinnaya-20, changes occurred in the telomeric region of the long arm of the 5A chromosome. Analysis with markers specific to the D genome suggested that introgressions of the T. timopheevii genome occurred in chromosomes of the D genome. However, the location of these markers on T. timopheevii chromosomes is unknown. Our data suggest that the genes for leaf rust resistance transferred from T. timopheevii to T. aestivum are located on chromosomes of homoeological group 2.


Triticum Aestivum Leaf Rust Rust Resistance Common Wheat Hexaploid Wheat 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Autrique, E., Singh, R.P., Tanksley, S.D., and Sorrells, M.E., Molecular Markers for Four Leaf Rust Resistance Genes Introgressed into Wheat from Wild Relatives, Genome, 1995, vol. 38, pp. 75-83.Google Scholar
  2. 2.
    Dubkovsky, J., Lukaszewski, A.J., Echaide, M., et al., Molecular Characterization of Two Triticum speltoides Interstitial Translocation Carrying Leaf Rust and Green Bug Resistance Genes, Crop Sci., 1998, vol. 38, pp. 1655-1660.Google Scholar
  3. 3.
    Ustoichivost' pshenitsy k buroi rzhavchine (Brown Rust Resistance of Wheat), Khvostova, V.V., Ed., Novosibirsk: Nauka, 1978.Google Scholar
  4. 4.
    Friebe, B., Jiang, J., Raupp, W.J., et al., Characterization of Wheat-Alien Translocation Conferring Resistance to Diseases and Pests: Current Status, Euphytica, 1996, vol. 91, pp. 59-87.Google Scholar
  5. 5.
    Yamamori, M., An N-Band Marker for Gene Lr18 for Resistance to Leaf Rust in Wheat, Theor. Appl. Genet., 1994, vol. 89, pp. 643-646.Google Scholar
  6. 6.
    Jarve, K., Peusha, H.O., Tsymbalova, J., et al., Chromosomal Location of Triticum timopheevii Derived Powdery Mildew Resistance Genes Transferred to Common Wheat, Genome, 2000, vol. 43, pp. 377-381.Google Scholar
  7. 7.
    Marino, C.L., Nelson, J.C., Lu, Y.H., et al., Molecular Genetic Maps of the Group 6 Chromosomes of Hexaploid Wheat (Triticum aestivum L. Em. Thell.), Genome, 1996, vol. 39, pp. 359-366.Google Scholar
  8. 8.
    Helguera, M., Khan, L.A., and Dubkovsky, J., Development of PCR Markers for Wheat Leaf Resistance Gene Lr47, Theor. Appl. Genet., 2000, vol. 101, pp. 625-631.Google Scholar
  9. 9.
    Röder, M.S., Korzun, V., Wendehake, K., et al., A Microsatellite Map of Wheat, Genetics, 1998, vol. 149, pp. 2007-2023.Google Scholar
  10. 10.
    Pestsova, E., Ganal, M.W., and Röder, M.S., Isolation and Mapping of Microsatellite Markers Specific for D Genome of Bread Wheat, Genome, 2000, vol. 43, pp. 689-697.Google Scholar
  11. 11.
    Pestsova, E., Korzun, V., Goncharov, N.P., et al., Microsatellite Analysis of Aegilops tauschii Germplasm, Theor. Appl. Genet., 2000, vol. 101, pp. 100-106.Google Scholar
  12. 12.
    Peng, H., Fahima, T., Roder, M.S., et al., Microsatellite Tagging of the Stripe Rust Resistance Gene YrH52 Derived from Wild Emmer Wheat T. diccocoides and Suggestive Crossover Interference on Chromosome 1B, Theor. Appl. Genet., 1999, vol. 98, pp. 862-872.Google Scholar
  13. 13.
    Korzun, V., Röder, M.S., Worland, A.J., and Börner, A., Intrachromosomal Mapping of Genes for Dwarfing (Rht12) and Vernalization Response (Vrn1) in Wheat by Using RFLP and Microsatellite Markers, Plant Breeding 1997, vol. 116, pp. 227-232.Google Scholar
  14. 14.
    Salina, E., Leonova, I., Börner, A., et al., Microsatellite Mapping of the Induced Sphaerococcoid Mutation Genes in Triticum aestivum, Theor. Appl. Genet., 2000, vol. 100, pp. 686-689.Google Scholar
  15. 15.
    Budashkina, E., Cytogenetic Study of Introgressive Disease-Resistant Common Wheat Lines, Tag. Ber. Acad. Landwirtsch. Wiss. DDR, 1988, vol. 206, pp. 209-212.Google Scholar
  16. 16.
    Plaschke, J., Ganal, M.W., and Röder, M.S., Detection of Genetic Diversity in Closely Related Bread Wheat Using Microsatellite Markers, Theor. Appl. Genet., 1995, vol. 91, pp. 1001-1007.Google Scholar
  17. 17.
    Stachel, M., Lelley, T., Grausgruber, H., and Vollmann, J., Application of Microsatellites in Wheat (Triticum aestivum L.) for Studying Genetic Differentiation Caused by Selection for Adaptation and Use, Theor. Appl. Genet., 2000, vol. 100, pp. 242-248.Google Scholar
  18. 18.
    Bryan, G.L., Gollins, A.J., Stephenson, P., et al., Isolation and Characterization of Microsatellites from Hexaploid Bread Wheat, Theor. Appl. Genet., 1997, vol. 94, pp. 557-563.Google Scholar
  19. 19.
    Maestra, B. and Naranjo, T., Structural Chromosome Differentiation between Triticum timopheevii, Triticum turgidum and T. aestivum, Theor. Appl. Genet. 1999, vol. 98, pp. 744-750.Google Scholar
  20. 20.
    Mori, N., Liu, Y.-G., and Tsunewaki, K., Wheat Phylogeny Determined by RFLP Analysis of Nuclear DNA: 2. Wild Tetraploid Wheats, Theor. Appl. Genet., 1995, vol. 90, pp. 129-134.Google Scholar
  21. 21.
    Sun, G.L., Fahima, T., Korol, A.B., et al., Identification of Molecular Markers Linked to the Yr15 Stripe Rust Resistant Gene of Wheat Originated in Wild Emmer Wheat, T. dicoccoides, Theor. Appl. Genet., 1997, vol. 95, pp. 622-628.Google Scholar
  22. 22.
    Korzun, V., Röder, M.S., Wendehake, K., et al., Integration of Dinucleotide Microsatellites from Hexaploid Bread Wheat into a Genetic Linkage Map of Durum Wheat, Theor. Appl. Genet., 1999, vol. 98, pp. 1202-1207.Google Scholar
  23. 23.
    Röder, M.S., Plaschke, J., König, S.U., et al., Abundance, Variability and Chromosome Location of Micro-satellites in Wheat, Mol. Gen. Genet., 1995, vol. 246, pp. 327-333.Google Scholar
  24. 24.
    Peil, A., Korzun, V., Schubert, V., et al., The Application of Wheat Microsatellites to Identify Disomic Triticum aestivum-Aegilops markgrafii Addition Lines, Theor. Appl. Genet., 1998, vol. 96, pp. 138-146.Google Scholar
  25. 25.
    Budashkina, E.B. and Kalinina, N.P., Development and Genetic Analysis of Common Wheat Introgressive Lines Resistant to Leaf Rust, Acta Phytopathol. Entomol., 2001, no. 1, pp. 61-65.Google Scholar
  26. 26.
    Leonova, I., Kalinina, N.P., Budashkina, E.B., et al., Comparative Molecular and Genetic Analyses of Triticum aestivum × T. timopheevii Hybrid Lines Resistant to Leaf Rust, EWAC Newslett., 2001, pp. 140-143.Google Scholar
  27. 27.
    Badaeva, E.D., Prokof'eva, Z.D., Bilinskaya, E.N., et al., Cytogenetic Analysis of Brown Rust-and Mildew-Resistant Hybrids Obtained by Crossing Common Wheat Triticum aestivum L. (AABBDD) with Wheat Species of the timopheevii Group (AtAtGG), Genetika (Moscow), 2000, vol. 36, no. 12, pp. 1663-1673.Google Scholar
  28. 28.
    Brown-Guedira, G.L., Gill, B.S., Cox, T.S., and Leath, S., Transfer of Resistance Genes from Triticum araraticum to Common Wheat, Plant Breed., 1997, vol. 116, pp. 105-112.Google Scholar
  29. 29.
    Brown-Guedira, G.L., Badaeva, E.D., Gill, B.S., and Cox, T.S., Chromosome Substitution of T. timopheevii in Common Wheat and Some Observation on the Evolution of Polyploid Wheat Species, Theor. Appl. Genet., 1996, vol. 93, pp. 1291-1298.Google Scholar
  30. 30.
    McIntosh, R.A., Mart, G.E., Devos, K.M., et al., Catalogue of Gene Symbols for Wheat, Proc. 9th Int. Wheat Genet. Symp. (Canada, 2-7 August, 1998) Slikard, E.A., Ed., Saskatoon, Saskatchewan, 1998, vol. 5.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2002

Authors and Affiliations

  • I. N. Leonova
    • 1
  • M. S. Röder
    • 2
  • E. B. Budashkina
    • 1
  • N. P. Kalinina
    • 1
  • E. A. Salina
    • 1
  1. 1.Institute of Cytology and GeneticsRussian Academy of SciencesNovosibirskRussia
  2. 2.Institute of Plant Genetics and Crop Plant ResearchGaterslebenGermany

Personalised recommendations