Journal of Paleolimnology

, Volume 28, Issue 3, pp 317–328 | Cite as

Late Glacial and Holocene chironomid assemblages in Lac Long Inférieur (southern France, 2090 m): palaeoenvironmental and palaeoclimatic implications

Article

Abstract

Changes in lake water temperature and trophic states were inferred using chironomid fossil assemblages from Lac Long Inférieur (Southern Alps, France). In the Late Glacial, a colder period, possibly analogous to the Younger Dryas, is characterised by a peak in Micropsectra, a cold stenothermic taxon. The increase in temperatures during the Late Glacial interstadial is indicated by a decrease in the percentages of cold stenothermic taxa (Tanytarsus lugens/Corynocera oliveri grp.) and by an increase in taxa linked to the development of vegetation in the littoral zone. The beginning of the Holocene is marked by the presence of taxa adapted to warmer and more eutrophic waters. During the Holocene, the progressive warming of the climate and increase in lake trophic status were indicated by the increase of eutrophic and warmer water indicators. An increase in tributary inflow into Lac Long Inférieur was also inferred by the increase in rheophilous taxa, reflecting increased snowmelt. During the Subatlantic, the composition of the chironomid spectra suggests a re-cooling of the climate and/or a decrease in lake trophic status.

Alpine lakes Aquatic ecosystem reconstruction Chironomids France Gyttja Palaeolimnology Trophic status 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barbero M., Bono P.G., Ozenda P. and Mondino G.P. 1973. Carte écologique des Alpes au 1/ 100,000. Nice-Menton (R21) et Viève-Cuneo (R 20). Documents de cartographie écologique 12: 49–76.Google Scholar
  2. Beaulieu J.L. 1974. Analyse pollinique des sédements holocènes du lac Long Inférieur (Alpes Maritimes). Rev. biol. écologie méditerranéenne 1: 97–104.Google Scholar
  3. Beaulieu J.L. 1976. Contribution à l'histoire holocène de la végétation dans les Alpes méridionales françaises. Atti del Convegno intern. Sulla communité alpina nell'antichita Ce. SDIR: 195–202.Google Scholar
  4. Beaulieu J.L. 1977. Contribution pollenanalytique à l'histoire tardiglaciaire et holocène de la végétation des Alpes méeridionales françaises, Ph.D., Université Aix-Marseille III, Marseille, France 358 pp.Google Scholar
  5. Beaulieu J.L., Clerc J. and Reille M. 1984. Late Weichselian fluctuations in the French Alps and Massif Central from pollen analyses. In: Mörner N.-A. and Karlén W. (eds), Climatic Changes on a Yearly to Millennial Basis. D. Reidel Publishing Company, pp. 75–90.Google Scholar
  6. Beaulieu J.L., Richard H., Ruffaldi P. and Clerc J. 1994. History of vegetation, climate and human action in the French Alps and the Jura over the last 15,000 years. Dissertationes Botanicae 234: 253–275.Google Scholar
  7. Benzecri J.P. 1973. L'analyse des donnees: II l'analyse des correspondances. Bordas, Paris, France, 620 pp.Google Scholar
  8. Birks H.J.B. and Gordon A.D. 1985. Numerical Methods in Quaternary Pollen Analysis. Academic Press, London, UK, 317 pp.Google Scholar
  9. Brooks S.J. 2000. Late-glacial fossil midge stratigraphies (Insecta: Diptera: Chironomidae) from the Swiss Alps. Palaeogeogr. Palaeoclim. Palaeoecol. 159: 261–279.CrossRefGoogle Scholar
  10. Brooks S.J. and Birks H.J.B. 2000. Chironomid-inferred late-glacial and early-Holocene mean July air temperatures for Kråkenes Lake, Western Norway. J. Paleolim. 23: 77–89.CrossRefGoogle Scholar
  11. Brooks S.J., Lowe J.J. and Mayle F.E. 1997. The late Devensian late Glacial palaeoenvironmental record from Whitrig Bog, SE Scotland. 2. Chironomidae (Insecta: Diptera). Boreas 26: 297–308.Google Scholar
  12. Brundin L. 1956. Die bodenfaunistischen Seentypen und ihre Anwendbarkeit auf die Sühalbkugel. Zugleich eine Theorie der produktionsbiologischen Bedeutung der glazialen Erosion. Rep. Inst. Freshwater. Res. 37: 186–235.Google Scholar
  13. Bryce D. 1960. Studies of the larvae of the British Chironomidae (Diptera), with keys to the Chironominae and the Tanypodinae. Trans. Soc. Brit. Ent. 14: 19–62.Google Scholar
  14. Bryce D. and Hobart A. 1972. The biology and identification of the larvae of the Chironomidae (Diptera). Entomol. Gaz. 23: 175–217.Google Scholar
  15. Chernovskii A.A. 1949. Identification of Larvae of the Midge Family Tendipedidae. The Zoological Institute of the Academy of Sciences USSR, Moscow, Russia, 280 pp.Google Scholar
  16. Clerk S., Hall R., Quinlan R. and Smol J.P. 2000. Quantitative inferences of past hypolimnetic anoxia and nutrient levels from a Canadian Precambrian Shield lake. J. Paleolim. 23: 319–336.CrossRefGoogle Scholar
  17. Cranston P.S. 1982. A Key to the Larvae of the British Ortho-cladiinae (Chironomidae). Scientific Publication of the Freshwater Biological Association, London, United Kingdom, 62 pp.Google Scholar
  18. Cranston P.S. 1995. Introduction. In: Armitage P.D., Cranston P.S. and Pinder L.C.V. (eds), The Chironomidae. Biology and Ecology of Non-Biting Midges. Chapman & Hall, London, UK, pp. 1–7.Google Scholar
  19. Ferrarese U. and Rossaro B. 1981. Chironomidi, 1 (Diptera, Chironomidae: Generalità, Diamesinae, Prodiamesinae. Consiglio nazionale dell ricerche, Verona, Italy, 97 pp.Google Scholar
  20. Francis D.R. 2001. A record of hypolimnetic oxygen conditions in a temperate multi-depression lake from chemical evidence and chironomid remains. J. Paleolim. 25: 351–365.CrossRefGoogle Scholar
  21. Frontier S. and Pichod-Viale D. 1998. Ecosystèmes, Structure Fonctionnement Evolution. Dunod, Paris, France, 447 pp.Google Scholar
  22. Goeury C. 1997. Gestion, traitement et représentation des données de la paléoécologie XV ème Symposium de l'Association des Palynologues de Langue Française. Abstracts., pp. 1–31.Google Scholar
  23. Guilizzoni P., Marchetto A., Lami A., Cameron N.G., Appleby P.J., Rose N.L. et al. 1996. The environmental history of a mountain lake (Lago Paione Superiore, Central Alps, Italy) for the last c. 100 years: a multidisciplinary, palaeolimnological study. J. Paleolim. 15: 245–264.CrossRefGoogle Scholar
  24. Heiri O. and Lotter A.F. 2001. Effect of low counts on quantitative environmental reconstructions: an example using subfossil chironomids. J. Paleolim. 26: 343–350.CrossRefGoogle Scholar
  25. Hofmann W. 1971. Zur Taxonomie und Palöcologie subfossiler Chironomiden (Dipt.) in Seesedimenten. Arch. Hydrobiol. Beih. Ergebn. Limnol. 6: 1–50.Google Scholar
  26. Hofmann W. 1983. Stratigraphy of Cladocera and Chironomidae in a core from a shallow North German lake. Hydrobiologia 103: 235–239.CrossRefGoogle Scholar
  27. Hofmann W. 1984. Stratigraphie subfossiler Cladocera (Crustacea) und Chironomidae (Diptera) in zwei Sedimentprofilen des Meer-felder Maares. Cour. Forsch.-Inst. Senckenberg 65: 67–80.Google Scholar
  28. Hofmann W. 1986. Chironomid analysis. In: Berglung B.E. (ed.), Handbook of Holocene Palaeoecology and Palaeohydrology. Wiley & Sons Ltd., Chichester, pp. 715–727.Google Scholar
  29. Larocque I., Hall R.I. and Grahn E. 2001. Chironomids as indicators of climate change: a 100-lake training set from a subarctic region of northern Sweden (Lapland). J. Paleolim. 26: 307–322.CrossRefGoogle Scholar
  30. Lebart L., Morineau A. and Piron M. 1997. Statistique exploratoire multidimensionnelle. Dunod, Paris, France, 439 pp.Google Scholar
  31. Levesque A.J., Mayle F.E., Walker I.R. and Cwynar L.C. 1993. A previously unrecognized late-glacial cold event in eastern North America. Nature 361: 623–626.CrossRefGoogle Scholar
  32. Lindegaard C. 1995. Classification of water-bodies and pollution. In: Armitage P.D., Cranston P.S. and Pinder L.C.V. (eds), The Chironomidae. Biology and Ecology of Non-Biting Midges. Chapman & Hall, London, UK, pp. 385–404.Google Scholar
  33. Livingstone D.M. and Lotter A.F. 1998. The relationship between air and water temperatures in lakes of the swiss Plateau: a case study with palaeolimnological implications. J. Paleolim. 19: 181–198.CrossRefGoogle Scholar
  34. Livingstone D.M., Lotter A.F. and Walker I.R. 1999. The decrease in summer surface water temperature with altitude in Swiss Alpine lakes: a comparison with air temperature lapse rates. Arct. Alp. Res. 31: 341–352.Google Scholar
  35. Lotter A.F., Birks H.J.B., Hofmann W. and Marchetto A. 1997. Modern diatom, cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. I. Climate. J. Paleolim. 18: 395–420.Google Scholar
  36. Lotter A.F., Birks H.J.B., Hofmann W. and Marchetto A. 1998. Modern diatom, cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. II. Nutrients. J. Paleolim. 19: 443–463.CrossRefGoogle Scholar
  37. Lotter A.F., Walker I.R., Brooks S.J. and Hofmann W. 1999. An intercontinental comparison of chironomid palaeotemperature inference models: Europe vs. North America. Quat. Sci. Rev. 18: 717–735.CrossRefGoogle Scholar
  38. Lumley H. 1995. Le grandiose et le sacré. Gravures rupestres protohistoriques et historiques de la région du mont Bego. Edisud, Nice, France, 452 pp.Google Scholar
  39. Magny M. 1995. Une histoire du climat, des derniers mammouths au siècle de l'automobile. Collection des Hesperides. Editions Errance, Paris, France, 175 pp.Google Scholar
  40. Merilaïnen J.J., Hynynen J., Teppo A., Polamäki A., Granberg K. and Reinikainen P. 2000. Importance of diffuse nutrient loading and lake level change to the eutrophication of an originally oligotrophic boreal lake: a palaeolimnological diatom and chironomid analysis. J. Paleolim. 24: 251–270.CrossRefGoogle Scholar
  41. Nakagawa T. 1998. Etudes palynologiques dans les Alpes françaises centrals et méridionales: histoire de la végétation Tardiglaciaire et Holocène, Ph.D., Université Aix-Marseille III, Marseille, France 206 pp.Google Scholar
  42. Olander H., Korhola A. and Blom T. 1997. Surface sediment Chironomidae (Insecta: Diptera) distributions along an ecotonal transect in subarctic Fennoscandia: developing a tool for palaeotemperature reconstructions. J. Paleolim. 18: 45–59.CrossRefGoogle Scholar
  43. Olander H., Birks H.J.B., Korhola A. and Blom T. 1999. An expanded calibration model for inferring lakewater and air temperatures from fossil chironomid assemblages in northern Fennoscandia. Holocene 9: 279–294.CrossRefGoogle Scholar
  44. Pellatt M.G., Smith M.J., Mathewes R.W. and Walker I.R. 1998. Palaeoecology of postglacial treeline shifts in the northern Cascade Mountains, Canada. Palaeogeogr. Palaeoclim. Palaeoecol. 141: 123–138.CrossRefGoogle Scholar
  45. Pinder L.C.V. 1995. The habitats of chironomid larvae. In: Armitage P.D., Cranston P.S. and Pinder L.C.V. (eds), The Chironomidae. Biology and Ecology of Non-Biting Midges. Chapman & Hall, London, UK, pp. 105–135.Google Scholar
  46. Ponel P., Andrieu-Ponel V., Parchoux F., Juhasz I. and Beaulieu J.L. 2001a. A late-Glacial-Holocene fossil insect succession from Vallée des Merveilles, Lac Long Inférieur, French Alps, and its paleoecological implications. Arct. Alp. Res. 33: 481–492.Google Scholar
  47. Ponel P., Andrieu-Ponel V., Parchoux F., Juhasz I. and Beaulieu J.L. 2001b. Late Glacial and Holocene high altitude environmental changes in Vallée des Merveilles (Alpes-Maritimes, France): insect evidence. J. Quat. Sci. 16: 795–812.CrossRefGoogle Scholar
  48. Quinlan R. and Smol J.P. 2001. Setting minimum head capsule abundance and taxa deletion criteria in chironomid-based inference models. J. Paleolim. 26: 327–342.CrossRefGoogle Scholar
  49. Reille M. 1990. Leçons de Palynologie et d'analyse pollinique. Editions du CNRS, Paris, France, 206 pp.Google Scholar
  50. Romain O. 1995. Les gravures du Mont Bégo: le secteur des Merveilles et le secteur de Fontanalbe. L'Anthropologie (Paris) 99: 382–392.Google Scholar
  51. Rossaro B. 1982. Chironomidi, 2 (Diptera Chironomidae: Ortho-cladiinae). Consiglio Nazionale dell Ricerche, Verona, Italy, 80 pp.Google Scholar
  52. Rück A., Walker I.R. and Hebda R. 1998. A palaeolimnological study of Tugulnuit Lake, British Columbia, Canada, with special emphasis on river influence as recorded by chironomids in the lake's sediment. J. Paleolim. 19: 63–75.CrossRefGoogle Scholar
  53. Saether O.A. 1968. Chironomids of the Finse area, Norway, with special reference to their distribution in a glacier brook. Arch. Hydrobiol. 64: 426–483.Google Scholar
  54. Saether O.A. 1980. The influence of eutrophication on deep lake benthic invertebrate communites. Prog. Wat. Tech. 12: 161–180.Google Scholar
  55. Schmid P.E. 1993. A Key to the Larval Chironomidae and Their Instars from Austrian Danube Region Streams and Rivers. Part 1. Diamesinae, Prodiamesinae and Orthocladiinae. Wasser und Abwasser Supplement 3. Federal Institute for Water Quality, Wien, Austria, 514 pp.Google Scholar
  56. Schnell O.A. and Willassen E. 1996. The chironomid (Diptera) communities in two sediment cores from Store Hovvatn, S. Norway, an acidified lake. Ann. Limnol. 32: 45–61.Google Scholar
  57. Serra-Tosio B. and Laville H. 1991. Liste annotée des Diptères Chironomidés de France Continentale et de Corse. Ann. Limnol. 27: 37–74.Google Scholar
  58. Smith M.J., Pelatt M.G., Walker I.R. and Mathewes R.W. 1998. Postglacial changes in chironomid communities and inferred climate near treeline at Mount Stoyoma, Cascade Mountains, southwestern British Columbia, Canada. J. Paleolim. 20: 277–293.CrossRefGoogle Scholar
  59. Stuiver M., Reimer P.J., Bard E., Beck J.W., Burr G.S., Hughen K.A. et al. 1998. INTCAL98 Radiocarbon age calibration, 24,000 to 0 cal BP. Radiocarbon 40: 1041–1083.Google Scholar
  60. Thioulouse J., Chessel D., Dolédec S. and Oliver J.M. 1997. ADE 4: a multivariate analysis and graphical display software. Stat. Comp. 7: 75–83.CrossRefGoogle Scholar
  61. Walker I.R. 1987. Chironomidae (Diptera) in paleoecology. Quat. Sci. Rev. 6: 29–40.CrossRefGoogle Scholar
  62. Walker I.R. 1990. Modern assemblages of arctic and alpine Chironomidae as analogues for late-Glacial communities. Hydrobiologia 214: 223–227.CrossRefGoogle Scholar
  63. Walker I.R. and Mathewes R.W. 1987. Chironomidae (Diptera) and postglacial climate at Marion Lake, British Columbia, Canada. Quat. Res. 27: 89–102.CrossRefGoogle Scholar
  64. Walker I.R. and Mathewes R.W. 1989. Chironomidae (Diptera) remains in surficial lake sediments from the Canadian Cordillera: analysis of the fauna across an altitudinal gradient. J. Paleolim. 2: 61–80.CrossRefGoogle Scholar
  65. Walker I.R., Smol J.P., Engstrom D.R. and Birks H.J.B. 1991a. An assessment of Chironomidae as quantitative indicators of past climatic change. Can. J. Fish. aquat. Sci. 48: 975–987.Google Scholar
  66. Walker I.R., Mott R.J. and Smol J.P. 1991b. Allerød-Younger Dryas lake temperatures from midge fossils in Atlantic Canada. Science 253: 1010–1012.Google Scholar
  67. Walker I.R., Wilson S.E. and Smol J.P. 1995. Chironomidae (Diptera): quantitative palaeosalinity indicators for lakes of western Canada. Can. J. Fish. aquat. Sci. 52: 950–960.Google Scholar
  68. Walker I.R., Levesque A.J., Cwynar L.C. and Lotter A.F. 1997. An expanded surface-water palaeotemperature inference model for use with fossil midges from eastern Canada. J. Paleolim. 18: 165–178.CrossRefGoogle Scholar
  69. Wiederholm T. 1983. Chironomidae of the Holarctic region. Keys and diagnoses. Part 1. Larvae. Ent. Scand. 19 Suppl.: 1–457.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  1. 1.Laboratoire d'/Ecologie des Eaux Continentales Méditerranéennes, Institut Méditerranéen d'Ecologie et de PaléoécologieFaculté des Sciences de Saint JérômeMarseille cedex 20France

Personalised recommendations