Behavior Genetics

, Volume 29, Issue 4, pp 221–232 | Cite as

DF-like Analyses of Binary, Ordered, and Censored Variables Using Probit and Tobit Approaches

  • Hans-Peter Kohler
  • Joseph Lee Rodgers
Article

Abstract

Binary and censored variables can lead to erroneous inferences about heritability in family studies if the dichotomous or censored nature of the dependent variable is not properly accounted for. The bivariate probit and tobit models proposed in this paper provide a unified approach to family studies with binary, ordered, and censored variables. Each model in this paper is derived from a similar latent-variable structure which can contain covariates that affect the expected value of the dependent variable, as well as genetic and shared environmental influences that lead to an association among related individuals. We apply the models to the fertility outcome and fertility motivations of Danish twins born 1953–1964 and find relevant genetic influences on the number of children as well as the desired timing of the first child.

Twin studies bivariate probit bivariate censored regression 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Amemiya, T. (1974). Multivariate regression and simulataneous equation models when the dependent variables are truncated normal. Econometrica 42:999-1012.Google Scholar
  2. Amemiya, T. (1985). Advanced Econometrics, Harvard University Press, Cambridge, MA.Google Scholar
  3. Ashford, J. R., and Sowden, R. R. (1970). Multivariate probit analysis. Biometrics 26:535-546.Google Scholar
  4. Becker, G. S. (1981). A Treatise on the Family, Harvard University Press, Cambridge, MA.Google Scholar
  5. Cherny, S., Cardon, L., Fulker, D., and DeFries, J. (1992). Differential heriability across levels of cognitive ability. Behav. Genet. 22:153-162.Google Scholar
  6. Cyphers, L. H., Philips, K., Fulker, D. W., and Mrazek, D. A. (1990). Twin temperament during the transition from infancy to early childhood. J. Person. Soc. Psychol. 51:339-346.Google Scholar
  7. DeFries, J., and Fulker, D. (1985). Multiple regression analysis of twin data. Behav. Genet. 15:467-473.Google Scholar
  8. Donner, A., Klar, N., and Eliasziw, M. (1995). Statistical methodology for estimating twin similarity with respect to a dichotomous trait. Genet. Epidemiol. 12(3):267-277.Google Scholar
  9. Fulker, D. W., Cardon, L. R., DeFries, J. C., Kimberling, W. J., Pennington, B. F., and Smith, S. D. (1991). Multiple regression analysis of sib-pair data on reading to detect quantitative trait loci. Read. Writing Interdisc. J. 3:299-313.Google Scholar
  10. Gao, X. J., Klar, N., and Donner, A. (1997). Comparison of methods for analyzing binary data arising from two-sample twin studies. Genet. Epidemiol. 14(4):349-363.Google Scholar
  11. Haggard, E. A. (1958). Intraclass Correlations and the Analysis of Variance, Dryden Press, New York.Google Scholar
  12. Kiefer, N. M. (1982). Testing for dependence in multivariate probit models. Biometrika 69(1):161-166.Google Scholar
  13. Kohler, H.-P., and Christensen, K. (1999). Genetic influences on fertility behavior: Findings from a Danish twin study. In Rodgers, J. L., Rowe, D. C., and Miller, W. B. (eds.), Genetic Influences on Fertility and Sexuality, Kluwer Academic, Boston (in press).Google Scholar
  14. Kohler, H.-P., Rodgers, J. L., and Christensen, K. (1999). Is fertility behavior in our genes: Findings from a Danish twin study. Popul. Dev. Rev. 25(2):253-288.Google Scholar
  15. Kyvik, K. O., Christensen, K., Skytthe, A., Harvald, B., and Holm, N. V. (1996). The Danish twin register. Danish Med. Bull. 43(5):465-470.Google Scholar
  16. LaBuda, M. C., and DeFries, J. (1990). Genetic etiology of reading disability: Evidence from a twin study. In Paylidis, G. T. (ed.), Perspectives on Dyslexia, Vol. 1, Wiley & Sons, New York.Google Scholar
  17. LaBuda, M. C., DeFries, J. C., and Fulker, D. W. (1986). Multiple regression analysis of twin data obtained from selected samples. Genet. Epidemiol. 3(6):425-433.Google Scholar
  18. Lesaffre, E., and Kaufmann, H. (1992). The existence and unicity of maximum likelihood estimators of a multivariate probit model. J. Am. Stat. Assoc. 87(419):805-11.Google Scholar
  19. Lesaffre, E., and Molenberghs, G. (1991). Multivariate probit analysis—A neglected procedure in medical statistics. Stat. Med. 10(9):1391-1403.Google Scholar
  20. Maddala, G. S. (1983). Limited-Dependent and Qualitative Variables in Econometrics, Cambridge University Press, Cambridge.Google Scholar
  21. Morimune, K. (1979). Comparisons of normal and logistic models in the bivariate dichotomous analysis. Econometrica 47(4):957-975.Google Scholar
  22. Neale, M. C., and Cardon, L. R. (1992). Methodology for Genetic Studies of Twins and Families, Kluwer Academic, London.Google Scholar
  23. Olson, J. M., Witte, J. S., and Elston, R. C. (1996). Association within twin pairs for a dichotomous trait. Genet. Epidemiol. 13(5):489-499.Google Scholar
  24. Pearson, K. (1900). Mathematical contribution to the theory of of evolution. VII On the correlation of characters not quantitively measurable. Phil. Trans. Roy. Soc. London Ser. A 195:1-47.Google Scholar
  25. Plomin, R., DeFries, J. C., and McClearn, G. E. (1990). Behavioral Genetics: A Primer, 2nd ed., W. H. Freeman, New York.Google Scholar
  26. Ramakrishnan, V., Goldberg, J., Henderson, W. G., Eisen, S. A., True, W., Lyons, M. J., and Tsuang, M. T. (1992). Elementary methods for the analysis of dichotomous outcomes in unselected samples of twins. Genet. Epidemiol. 9:271-287.Google Scholar
  27. Ramakrishnan, V., Meyer, J. M., Goldberg, J., and Henderson, W. G. (1996). Univariate analysis of dichotomous or ordinal data from twin pairs—A simulation study comparing structural equation modeling and logistic-regression. Genet. Epidemiol. 13(1):79-90.Google Scholar
  28. Rodgers, J. L., and McGue, M. (1994). A simple algebraic demonstration of the validity of DeFries-Fulker analysis in unselected samples with multiple kinship levels. Behav. Genet. 24(3):259-262.Google Scholar
  29. Rodgers, J. L., and Rowe, D. C. (1987). IQ similarity it twins, siblings, half siblings, cousins and random pairs. Intelligence 11:199-206.Google Scholar
  30. Rodgers, J. L., Rowe, D., and Li, C. (1994). Beyond natures versus nuture: Df analysis of nonshared influences on problem behavior. Dev. Psychol. 30(3):374-384.Google Scholar
  31. Rodgers, J. L., Kohler, H.-P., Kyvik, K., and Christensen, K. (1998). Genes affect human fertility via fertility motivations: Findings from a contemporary danish twin study. Mimeo, Max Planck Institute for Demographic Research, Rostock, Germany.Google Scholar
  32. Sham, P. C., Walters, E. E., Neale, M. C., Heath, A. C., MacLean, C. J., and Kendler, K. S. (1994). Logistic regression analysis of twin data: Estimation of parameters of the multifactorial liability-threshold model. Behav. Genet. 24:229-238.Google Scholar
  33. Van den Oord, E. J. C. G., and Rowe, D. C. (1997). Effects of censored variables on family studies. Behav. Genet. 27:99-112.Google Scholar
  34. Waller, N. G. (1994). A DeFries and Fulker regression model for genetic nonadditivity. Behav. Genet. 24:149-153.Google Scholar
  35. Yashin, A. I., and Iachine, I. A. (1997). How frailty models can be used for evaluating logevity limits: Taking advantage of an inter-diciplinary approach. Demography 34(1):31-48.Google Scholar
  36. Zieleniewski, A. M., Fulker, D. W., DeFries, J. C., and LaBuda, M. C. (1987). Multiple regression analysis of twin and sibling data. Person. Indiv. Diff. 8:787-791.Google Scholar

Copyright information

© Plenum Publishing Corporation 1999

Authors and Affiliations

  • Hans-Peter Kohler
    • 1
  • Joseph Lee Rodgers
    • 2
  1. 1.Research Group on Social Dynamics and FertilityMax Planck Institute for Demographic ResearchRostockGermany
  2. 2.Department of PsychologyUniversity of OklahomaNorman

Personalised recommendations