Neurochemical Research

, Volume 27, Issue 11, pp 1525–1533 | Cite as

Long-Term Effects of Prenatal Stress on Dopamine and Glutamate Receptors in Adult Rat Brain

  • María Alejandra Berger
  • Virginia G. Barros
  • María Inés Sarchi
  • Frank I. Tarazi
  • Marta C. Antonelli


Prenatal stress greatly influences the ability of an individual to manage stressful events in adulthood. Such vulnerability may result from abnormalities in the development and integration of forebrain dopaminergic and glutamatergic projections during the prenatal period. In this study, we assessed the effects of prenatal stress on the expression of selective dopamine and glutamate receptor subtypes in the adult offsprings of rats subjected to repeated restraint stress during the last week of pregnancy. Dopamine D2-like receptors increased in dorsal frontal cortex (DFC), medial prefrontal cortex (MPC), hippocampal CA1 region and core region of nucleus accumbens (NAc) of prenatally stressed rats compared to control subjects. Glutamate NMDA receptors increased in MPC, DFC, hippocampal CA1, medial caudate-putamen, as well as in shell and core regions of NAc. Group III metabotropic glutamate receptors increased in MPC and DFC of prenatally stressed rats, but remained unchanged in all other regions examined. These results indicate that stress suffered during the gestational period has long lasting effects that extend into the adulthood of prenatally stressed offsprings. Changes in dopamine and glutamate receptor subtype levels in different forebrain regions of adult rats suggest that the development and formation of the corticostriatal and corticolimbic pathways may be permanently altered as a result of stress suffered prenatally. Maldevelopment of these pathways may provide a neurobiological substrate for the development of schizophrenia and other idiopathic psychotic disorders.

Autoradiography corticostriatal projections dopamine D2-like receptors group III metabotropic glutamate receptors NMDA glutamate receptors prenatal restraint stress 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Finlay, J. M. and Zigmond, M. J. 1997. The effects of stress on central dopaminergic neurons: Possible clinical implications. Neurochem. Res. 22:1387-1394.Google Scholar
  2. 2.
    Weinstock, M. 1997. Does prenatal stress impair coping and regulation of hypothalamic-pituitary-adrenal axis? Neurosci. Behav. Rev. 21:1-10.Google Scholar
  3. 3.
    van Os, J. and Selten, J. P. 1998. Prenatal exposure to maternal stress and subsequent schizophrenia. The May 1940 invasion of The Netherlands. Br. J. Psychiatry. 172:324-326.Google Scholar
  4. 4.
    Henry, C., Guegant, G., Cador, M., Arnauld, E., Arsaut, J., Le Moal, M., and Demotes-Mainard, J. 1995. Prenatal stress in rats facilitates amphetamine-induced sensitization and induces long-lasting changes in dopamine receptors in the nucleus accumbens. Brain Res. 685:179-186.Google Scholar
  5. 5.
    Vallée, M., Maccari, S., Dellu, F., Simon, H., and Le Moal, M. 1999. Long term effects of prenatal stress and postnatal handling on age-related glucocorticoid secretion and cognitive performance: A longitudinal study in the rat. Eur. J. of Neuroscience. 11:2906-2916.Google Scholar
  6. 6.
    Meaney, M. J., Aitken, D. H., Van Berkel, C., Bhatnagar, S., and Sapolsky, M. 1988. Effect of neonatal handling on agerelated impairments associated with the hippocampus. Science 239:766-768.Google Scholar
  7. 7.
    Escorihuela, R. M., Tobena, A., and Fernández-Teruel, A. 1995. Environmental enrichment and postnatal handling prevent spatial learning deficits in aged hypoemotional (Roman high avoidance) and (Roman low avoidance) rats. Learn. Behav. 2:40-48.Google Scholar
  8. 8.
    Maccari, S., Piazza, P. V., Kabbaj, M., Barbazanges, A., Simon, H., and Le Moal, M. 1995. Adoption reverses the long-term impairment in glucocorticoid feedback induced by prenatal stress. J. Neurosci. 15:110-116.Google Scholar
  9. 9.
    Barbazanges, A., Piazza, P. V., Le Moal, M., and Maccari, S. 1996. Maternal glucocorticoid secretion mediates long-term effects of prenatal stress. J. Neurosci. 16:12, 3943-3949.Google Scholar
  10. 10.
    Baldessarini, R. J. and Tarazi, F. I. 2001. Drugs and the treatment of psychiatric disorders. Pages 485-520, in Hardman, J. G. and Limbird, L. E. (eds.), Goodman and Gilman's: The Pharmacologic Basis of Therapeutics, 10th edition, McGraw-Hill, New York.Google Scholar
  11. 11.
    Deutch, A. Y. 1993. Prefrontal cortical dopamine systems and the elaboration of functional corticostriatal circuits: Implications for schizophrenia and Parkinson's disease. J. Neural Transm. 91:197-221.Google Scholar
  12. 12.
    Carlsson, M. and Carlsson, A. 1990. Interactions between glutamatergic and monoaminergic systems within the basal ganglia-implications for schizophrenia and Parkinson's disease. Trends Neurosci. 13:272-276.Google Scholar
  13. 13.
    Calabresi, P., Pisani, A., Mercuri, N. B., and Bernardi, G. 1996. The corticostriatal projection: From synaptic plasticity to dysfunctions of the basal ganglia. Trends Neurosci. 19:19-24.Google Scholar
  14. 14.
    Fride, E. and Weinstock, M. 1988. Prenatal stress increases anxiety related behavior and alters cerebral lateralization of dopamine activity. Life Sci. 42:1059-1065.Google Scholar
  15. 15.
    Alonso, S. J., Navarro, E., Santana, C., and Rodríguez, M. 1997. Motor lateralization, behavioral despair and dopaminergic brain asymmetry after prenatal stress. Pharmacol. Biochem. Behav. 58:2, 443-448.Google Scholar
  16. 16.
    Doherty, M. D. and Gratton, A. 1997. NMDA receptors in nucleus accumbens modulate stress-induced dopamine release in nucleus accumbens and ventral tegmental area. Synapse 26:225-234.Google Scholar
  17. 17.
    Zigmond, M. J., Castro, S. L., Keefe, K. A., Abercrombie, E. D., and Sved, A. F. 1998. Role of excitatory amino acids in the regulation of dopamine synthesis and release in the neostriatum. Amino Acids 14:57-62.Google Scholar
  18. 18.
    Schwendt, M. and Jevozá, D. 2000. Gene expression of two glutamate receptor subunits in response to repeated stress exposure in rat hippocampus. Cell Mol. Neurobiol. 20:319-329.Google Scholar
  19. 19.
    Ward, I. L. and Weisz, J. 1984. Differential effects of maternal stress on circulating levels of corticosterone, progesterone and testosterone in male and female rat fetus and their mothers. Endocrinology 84:1145-1155.Google Scholar
  20. 20.
    Benes, F. M. 2000. Emerging principles of altered neural circuitry in schizophrenia. Brain Res. Rev. 31:251-269.Google Scholar
  21. 21.
    Tarazi, F. I., Campbell, A., Yeghiayan, S. K., and Baldessarini, R. J. 1998. Localization of dopamine receptor subtypes in corpus striatum and nucleus accumbens septi of rat brain: Comparison of D1-, D2-, and D4-like receptors. Neuroscience 83:169-176.Google Scholar
  22. 22.
    Tarazi, F. I., Zhang, K., and Baldessarini, R. J. 2001. Long-term effects of olanzapine, risperidone, and quetiapine on dopamine receptor types in regions of rat brain: Implications for antipsychotic drug treatment. J. Pharmacol. Exp. 297:711-717.Google Scholar
  23. 23.
    Defagot, M. C. and Antonelli, M. C. 1997. Autoradiographic localization of the putative D4 dopamine receptor in rat brain. Neurochem. Research 22:401-407.Google Scholar
  24. 24.
    Defagot, M. C., Falzone, T. L., Low, M. J., Grandy, D. K., Rubinstein, M., and Antonelli, M. C. 2000. Quantitative analysis of the dopamine D4 receptor in the mouse brain. J. Neurosci. Res. 59:202-208.Google Scholar
  25. 25.
    Tarazi, F. I., Campbell, A., Yeghiayan, S. K., and Baldessarini, R. J. 1998. Localization of glutamate receptors in caudateputamen and nucleus accumbens septi of rat brain: Comparison of NMDA, AMPA and kainate receptors. Synapse 30:227-235.Google Scholar
  26. 26.
    Tarazi, F. I., Zhang, K., and Baldessarini, R. J. 2000. Long-term effects of nigrostriatal dopamine denervation on ionotropic glutamate receptors in rat caudate-putamen. Brain Research 881: 69-72.Google Scholar
  27. 27.
    Hudtloff, C. and Thomsen, C. 1998. Autoradiographic visualization of group III metabotropic glutamate receptors using [3H]-L-2-amino-4-phosphonobutyrate. Br. J. Pharmacol. 124:971-977.Google Scholar
  28. 28.
    Nishio, H., Kasuga, S., Ushijima, M., and Harada, Y. 2001. Prenatal stress and postnatal development of neonatal rats— sex-dependent effects on emotional behavior and learning ability of neonatal rats. Int. J. Devl. Neuroscience 19:37-45.Google Scholar
  29. 29.
    Shono, T., Imajima, T., Zakaria, O., and Suita, S. 1999. Does maternal stress induce abnormal descent of the testis in prepubertal rats? BJU International 84:353-356.Google Scholar
  30. 30.
    Hutson, J. M. 1985. A biphasic model for the hormonal control of testicular descent. Lancet 2:419-421.Google Scholar
  31. 31.
    Ward, I. L. and Weisz, J. 1980. Maternal stress alters plasma testosterone in fetal males. Science 207:328-329.Google Scholar
  32. 32.
    Zilles, K. and Wree, A. 1995. Cortex: Areal and laminar structure. Pages 649-685, in Paxinos, G. (ed), The rat nervous system, second edition. Academic Press Inc. San Diego.Google Scholar
  33. 33.
    Diaz, R., Fuxe, K., and Ögren, S. O. 1997. Prenatal corticosterone treatment induces long-term changes in spontaneus and apomorphine-mediated motor activity in male and female rats. Neuroscience 81:129-140.Google Scholar
  34. 34.
    Huttenlocher, P. R. 1979. Synaptic density in human frontal cortex-developmental changes and effects of aging. Brain Res. 163:195-205.Google Scholar
  35. 35.
    Teicher, M. H., Andersen, S. L., and Hostetter, Jr., J. C. 1995. Evidence for dopamine receptor pruning between adolescence and adulthood in striatum but not nucleus accumbens. Dev. Brain Res. 89:167-172.Google Scholar
  36. 36.
    Tarazi, F. I. and Baldessarini, R. J. 2000. Comparative postnatal development of dopamine D1, D2 and D4 receptors in rat forebrain. Int. J. Dev. Neurosci. 18:29-37.Google Scholar
  37. 37.
    Lidow, M. S., Goldman-Rakic, P. S., and Rakic, P. 1991. Synchronized overproduction of neurotransmitter receptors in diverse regions of the primate cerebral cortex. Proc. Natl. Acad. Sci. USA 88:10218-10221.Google Scholar
  38. 38.
    Monaghan, D. T., Bridges, R. J., and Cotman, C. W. 1989. The excitatory amino acid receptors: Their classes, pharmacology, and distinct properties in the function of the central nervous system. Annu. Rev. Pharmacol. Toxicol. 29:365-402.Google Scholar
  39. 39.
    Tamminga, C. A. 1998. Schizophrenia and glutamatergic transmission. Crit. Rev. Neurobiology 12:21-36.Google Scholar
  40. 40.
    Carlsson, A., Hansson, L. O., Waters, N., and Carlsson, M. L. 1999. A glutamatergic deficiency model of schizophrenia. Br. J. Psychiatr. 174:2-6.Google Scholar
  41. 41.
    Shigemoto, R., Kinoshita, A., Wada, E., Nomura, S., Ohishi, H., Takada, M., Flor, P., Neki, A., Abe, T., Nakanishi, S., and Mizuno, N. 1997. Differential presynaptic localization of metabotropic glutamate receptor subtypes in the rat hippocampus. J. Neurosci. 17:7503-7522.Google Scholar
  42. 42.
    Nakanishi, S. 1994. Metabotropic glutamate receptors: Synaptic transmission, modulation, and plasticity. Neuron 13:1031-1037.Google Scholar
  43. 43.
    Pin, J. P. and Duvoisin, R. 1995. Review: Neurotransmitter receptors I. The metabotropic glutamate receptors: Structure and functions. Neuropharmacology 34:1-26.Google Scholar
  44. 44.
    Thomsen, C. and Hampson, D. 1999. Contribution of metabotropic glutamate receptor mGluR4 to [3H]-L-2-amino-4-phosphonobutyrate binding in mouse brain. J. Neurochem. 72:835-840.Google Scholar
  45. 45.
    Benitez, R., Fernández-Capetillo, O., Lázaro, E., Mateos, J. M., Osorio, A., Elezgarai, I., Bilbao, A., Lingenhoehl, K., Van der Putten, H., Hampson, D. R., Kuhn, R., Knöpfel, T., and Grandes, P. 2000. Immunocytochemical localization of the metabotropic glutamate receptor mGlu4a in the piriform cortex of the rat. J. Comp. Neurol. 417:263-274.Google Scholar
  46. 46.
    Bradley, S. R., Levey, A. I., Hersch, S. M., and Conn, P. J. 1996. Immunocytochemical localization of group III metabotropic glutamate receptors in the hippocampus with subtype-specific antibodies. J. Neurosci. 16:2044-2056.Google Scholar
  47. 47.
    Bradley, S. R., Standaert, D. G., Rhodes, K. J., Rees, H. D., Testa, C. M., Levey, A. I., and Conn, P. J. 1999. Immunocytochemical localization of subtype 4a metabotropic glutamate receptors in the rat and mouse basal ganglia. J. Comp. Neurol. 407:33-46Google Scholar
  48. 48.
    Berger, M. A., Defagot, M. C., Villar, M. J., and Antonelli, M. C. 2001. D4 dopamine and metabotropic glutamate receptors in cerebral cortex and striatum in rat brain. Neurochem. Research 26:345-352Google Scholar
  49. 49.
    Iversen, L., Mulvihill, E., Haldeman, B., Diemer, N. H., Kaiser, F., Sheardown, M., and Kristensen, P. 1994. Changes in metabotropic glutamate receptor mRNA levels following global ischemia: Increase of a putative presynaptic subtype (mGluR4) in highly vulnerable rat brain areas. J. Neurochem. 63:625-633.Google Scholar
  50. 50.
    Morishima, H. O., Yeh, M. N., and James, L. S. 1979. Reduced uterine blood flow and fetal hypoxemia with acute maternal stress: Experimental observation in the pregnant baboon. Am. J. Obstet. Gynecol. 134: 270-275.Google Scholar
  51. 51.
    Nisenbaum, L. K., Webster, S. M., Chang, S. L., Mc Queeney, K. D., and LoTurco, J. J. 1998. Early patterning of prelimbic cortical axons to the striatal patch compartment in the neonatal mouse. Dev. Neurosci. 20:113-124.Google Scholar
  52. 52.
    Sheth, A. N., Mc Kee, M. L., and Bhide, P. G. 1998. The sequence of formation and development of corticostriate connections in mice. Dev. Neurosci. 20:98-112.Google Scholar
  53. 53.
    Paxinos, F. and Watson, C. 1982. The Rat Brain in Stereotaxic Coordinates. Academic Press, New York.Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • María Alejandra Berger
    • 1
  • Virginia G. Barros
    • 1
  • María Inés Sarchi
    • 2
  • Frank I. Tarazi
    • 3
    • 4
  • Marta C. Antonelli
    • 1
  1. 1.Instituto de Química y Fisicoquímica Biológicas (UBA-CONICET), Facultad de Farmacia y BioquímicaUniversidad de Buenos AiresBuenos AiresArgentina
  2. 2.Departamento de Fisicomatemática, Facultad de Farmacia y BioquímicaUniversidad de Buenos AiresArgentina
  3. 3.Department of Psychiatry and Neuroscience ProgramHarvard Medical SchoolBoston
  4. 4.McLean Division of Massachusetts General HospitalMailman Research CenterBelmont

Personalised recommendations