Neurochemical Research

, Volume 27, Issue 11, pp 1491–1498 | Cite as

Molecular Mechanisms of Memory Retrieval

  • German Szapiro
  • Julieta M. Galante
  • Daniela M. Barros
  • Miguelina Levi de Stein
  • Monica R. M. Vianna
  • Luciana A. Izquierdo
  • Ivan Izquierdo
  • Jorge H. Medina


Memory retrieval is a fundamental component or stage of memory processing. In fact, retrieval is the only possible measure of memory. The ability to recall past events is a major determinant of survival strategies in all species and is of paramount importance in determining our uniqueness as individuals. Most biological studies of memory using brain lesion and/or gene manipulation techniques cannot distinguish between effects on the molecular mechanisms of the encoding or consolidation of memories and those responsible for their retrieval from storage. Here we examine recent findings indicating the major molecular steps involved in memory retrieval in selected brain regions of the mammalian brain. Together the findings strongly suggest that memory formation and retrieval may share some molecular mechanisms in the hippocampus and that retrieval initiates extinction requiring activation of several signaling cascades and protein synthesis.

Avoidance training memory retrieval memory extinction hippocampus synaptic plasticity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    James, W. 1890. Principles of Psychology. Holt, New York.Google Scholar
  2. 2.
    McGaugh, J. L. 1966. Time-dependent processes in memory storage. Science 153:1351-1358.Google Scholar
  3. 3.
    Moser, M. B. and Moser, E. I. 1998. Distributed encoding and retrieval of spatial memory in the hippocampus. J. Neurosci. 18(18):7535-7542.Google Scholar
  4. 4.
    Zola, S. M. and Squire, L. R. 1990. The primate hippocampal formation: Evidence for a time limited role in memory storage. Science 250:288-290.Google Scholar
  5. 5.
    Anagnostaras, S. G., Maren, S., and Fanselow, M. S. 1999. Temporally graded retrograde amnesia of contextual fear after hippocampal damage in rats: within-subjects examination. J. Neurosci. 19(3):1106-1114.Google Scholar
  6. 6.
    Zola, S. M. and Squire, L. R. 2001. Relationship between magnitude of damage to the hippocampus and impaired recognition memory in monkeys. Hippocampus 11:92-98.Google Scholar
  7. 7.
    Rempel-Clower, N. L., Zola, S. M., Squire, L. R., and Amaral, D. G. 1996. Three cases of enduring memory impairment after bilateral damage limited to the hippocampal formation. J. Neurosci. 16(16):5233-5255.Google Scholar
  8. 8.
    Teng, E. and Squire, L. R. 1999. Memory for places learned long ago is intact after hippocampal damage. Nature 400:675-677.Google Scholar
  9. 9.
    Minichiello, L., Korte, M., Wolfer, D., Kuhn, R., Unsicker, K., Cestari, V., Rossi-Arnaud, C., Lipp, H. P., Bonhoeffer, T., and Klein, R. 1999. Essential role for TrkB receptors in hippocampus-mediated learning. Neuron 24(2):401-414.Google Scholar
  10. 10.
    Tsien, J. Z., Huerta, P. T., and Tonegawa, S. 1996. The essential role of hippocampal CA1 NMDA receptor-dependent synaptic plasticity in spatial memory. Cell 87(7):1327-1338.Google Scholar
  11. 11.
    Silva, A. J., Paylor, R., Wehner, J. M., and Tonegawa, S. 1992. Impaired spatial learning in alpha-calcium-calmodulin kinase II mutant mice. Science 257:206-211.Google Scholar
  12. 12.
    Bourtchuladze, R., Frenguelli, B., Blendy, J., Cioffi, D., Schutz, G., and Silva, A. J. 1994. Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell 79(1):59-68.Google Scholar
  13. 13.
    Izquierdo, I. and Medina, J. H. 1997. Memory formation: the sequence of biochemical events in the hippocampus and its connection to activity in other brain structures. Neurobiol. Learn. Mem. 68:285-316.Google Scholar
  14. 14.
    Setlow, B., Roozendaal, B., and McGaugh, J. L. 2000. Involvement of a basolateral amygdala complex-nucleus accumbens pathway in glucocorticoid-induced modulation of memory consolidation. Eur. J. Neurosci. 1:367-375.Google Scholar
  15. 15.
    Wilensky, A. E., Schafe, G. E., and LeDoux, J. E. 2000. The amygdala modulates memory consolidation of fear-motivated inhibitory avoidance learning but not classical fear conditioning. J. Neurosci. 20(18):7059-7066.Google Scholar
  16. 16.
    Goosens, K. A. and Maren, S. 2001. Contextual and auditory fear conditioning are mediated by the lateral, basal, and central amygdaloid nuclei in rats. Learn. Mem. 3:148-155.Google Scholar
  17. 17.
    Izquierdo, I. and Medina, J. H. 1995. Correlation between the long-term potentiation and the pharmacology of memory and. Neurobiol. Learn. Mem. 68:285-316.Google Scholar
  18. 18.
    Atkins, C. M., Selcher, J. C., Petraitis, J. J., Trzaskos, J. M., and Sweatt, J. D. 1998. The MAPK cascade is required for mammalian associative learning. Nat. Neurosci. 7:602-609.Google Scholar
  19. 19.
    McGaugh, J. L. 2000. Memory: a century of consolidation. Science 287:248-251.Google Scholar
  20. 20.
    Medina, J. H., Schroder, N., and Izquierdo, I. 1999. Two different properties of short-and long-term memory. Behav. Brain. Res. 103:119-121.Google Scholar
  21. 21.
    Gold, P. E. 1986. The use of avoidance training in studies of modulation of memory storage. Behav. Neural Biol. 46:87-98.Google Scholar
  22. 22.
    Vianna, M. R. M., Izquierdo, L. A., Barros, D. M., Ardenghi, P., Pereira, P., Rodrigues, C., Moletta, B., Medina, J. H., and Izquierdo, I. 2000. Differential role of hippocampal cAMPdependent protein kinase in short-and long-term memory. Neurochem. Res. 5:621-626.Google Scholar
  23. 23.
    Vianna, M. R. M., Szapiro, G., McGaugh, J. L., and Izquierdo, I. 2001. Retrieval of memory for fear-motivated training initiates extinction requiring protein synthesis in the rat hippocampus. Proc. Natl. Acad. Sci. U.S.A. (98)21:12251-12254.Google Scholar
  24. 24.
    Izquierdo, I., Da Cunha, C., Rosat, R., Jerusalinsky, D., Quillfeldt, J. A., Ferreira, M. B. C., and Medina, J. H. 1992. Neurotransmitter receptors involved in memory processing by the amygdala, medial septum and hippocampus of rats. Behav. Neural Biol, 58:16-25.Google Scholar
  25. 25.
    Holt, W. and Maren, S. 1999. Muscimol inactivation of the dorsal hippocampus impairs contextual retrieval of fear memory. J. Neurosci. 19(20):9054-9062.Google Scholar
  26. 26.
    Szapiro, G., Izquierdo, L. A., Alonso, M., Barros, D., Paratcha, G., Ardenghi, P., Pereira P., Medina, J. H., and Izquierdo, I. 2000. Participation of hippocampal metabotropic receptors, protein kinase A and mitogen-activated protein kinases in memory retrieval. Neuroscience 99:1-5.Google Scholar
  27. 27.
    Kandel, E. R. 2001. The Molecular Biology of Memory Storage: A Dialogue Between Genes and Synapses. Science 294:1030-1038.Google Scholar
  28. 28.
    Staubli, U., Thibault, O., DiLorenzo, M., and Lynch, G. 1989. Antagonism of NMDA receptors impairs acquisition but not retention of olfactory memory. Behav. Neurosci. 103(1):54-60.Google Scholar
  29. 29.
    Steele, R. J. and Morris, R. G. 1999. Delay-dependent impairment of a matching-to-place task with chronic and intrahippocampal infusion of the NMDA-antagonist D-AP5. Hippocampus 9(2):118-136.Google Scholar
  30. 30.
    Riedel, G., Micheau, J., Lam A. G., Roloff, Ev, Martin, S. J., Bridge, H., Hoz, Ld, Poeschel, B., McCulloch, J., and Morris, R. G. 1999. Reversible neural inactivation reveals hippocampal participation in several memory processes. Nat. Neurosci. 10:898-905.Google Scholar
  31. 31.
    Schulz, B., Fendt, M., Gasparini, F., Lingenhohl, K, Kuhn, R., and Koch, M. 2001. The metabotropic glutamate receptor antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP) blocks fear conditioning in rats. Neuropharmacol. 41(1):1-7.Google Scholar
  32. 32.
    Benowitz, L. I. and Routtemberg, A. 1997. GAP-43: an intrinsic determinant of neuronal development and plasticity. Trends Neurosci. 20:84-91.Google Scholar
  33. 33.
    Cammarota, M., Paratcha, G., Levi de Stein, M., Bernabeu, R., Izquierdo, I., and Medina, J. H. 1997. B-50/GAP-43 phosphorylation and PKC activity are increased in rat hippocampal synaptosomal membranes after an inhibitory avoidance training. Neurochem. Res. 4:499-505.Google Scholar
  34. 34.
    Paratcha, G., Furman, M., Bevilaqua, L., Cammarota, M., Vianna, M., de Stein, M. L., Izquierdo, I., and Medina, J. H. 2000. Involvement of hippocampal PKCbetaI isoform in the early phase of memory formation of an inhibitory avoidance learning. Brain Res. 855(2):199-205.Google Scholar
  35. 35.
    Weeber, E. J., Atkins, C. M., Selcher, J. C., Varga, A. W., Mirnikjoo, B., Paylor, R., Leitges, M., and Sweatt, J. D. 2000. A role for the beta isoform of protein kinase C in fear conditioning. J. Neurosci. 20(16):5906-5914.Google Scholar
  36. 36.
    Vianna, M. R., Barros, D. M., Silva, T., Choi, H., Madche, C., Rodrigues, C., Medina, J. H., and Izquierdo, I. 2000. Pharmacological demonstration of the differential involvement of protein kinase C isoforms in short-and long-term memory formation and retrieval of one-trial avoidance in rats. Psychopharmacology 150:77-84.Google Scholar
  37. 37.
    Yin, J. C. P. and Tully, T. 1996. CREB and the formation of long-term memory. Curre. Opin. Neurobiol. 6:204-208.Google Scholar
  38. 38.
    Guzowski, J. F. and McGaugh, J. L. 1997. Antisense oligodeoxynucleotide-mediated disruption of hippocampal cAMP response element binding protein levels impairs consolidation of memory for water maze training. Proc. Natl. Acad. Sci. 94:2693-2698.Google Scholar
  39. 39.
    Impey, S., Smith, D. M., Obrietan, K., Donahue, R., Wade, C., and Storm, D. R. 1998. Stimulation of cAMP response element (CRE)-mediated transcription during contextual learning. Nat. Neurosci. 1:595-601.Google Scholar
  40. 40.
    Taubenfeld, S. M., Wiig, K. A., Bear, M. F., and Alberini, C. M. 1999. A molecular correlate of memory and amnesia in the hippocampus. Nat. Neurosci. 2:309-310.Google Scholar
  41. 41.
    Bernabeu, R., Bevilaqua, L., Ardenghi, P., Bromberg, E., Schmitz, P., Bianchin, M., Izquierdo, I., and Medina, J. H. 1997. Involvement of hippocampal cAMP/cAMP-dependent protein kinase signaling pathways in a late memory consolidation phase of aversively motivated learning in rats. Proc. Natl. Acad. Sci. 94:7041-7046.Google Scholar
  42. 42.
    Hall, J., Thomas, K. L., and Everitt, B. J. 2001. Fear memory retrieval induces CREB phosphorylation and Fos expression within the amygdala. Eur. J. Neurosci. 7:1453-1458.Google Scholar
  43. 43.
    Ghosh, A. and Greenberg, M. E. 1995. Calcium signaling in neurons: molecular mechanisms and cellular consequences. Science 268:239-247.Google Scholar
  44. 44.
    Kandel, E. R. and Squire, L. R. 2000. Neuroscience: breaking down scientific barriers to the study of brain and mind. Science 290:1113-1120.Google Scholar
  45. 45.
    Izquierdo, L. A., Vianna, M., Barros, D. M., Mello e Souza, T., Ardenghi, P., Sant' Anna, M. K., Rodrigues, C., Medina, J. H., and Izquierdo, I. 2000. Short-and long-term memory are differentially affected by metabolic inhibitors given into hippocampus and entorhinal cortex. Neurobiol. Learn. Mem. 73(2):141-149.Google Scholar
  46. 46.
    Barros, D. M., Izquierdo, L. A, Mello e Souza, T., Ardenghi, P. G., Pereira, P., Medina, J. H., and Izquierdo, I. 2000. Molecular signalling pathways in the cerebral cortex are required for retrieval of one-trial avoidance learning in rats. Behav. Brain Res. 114(1-2):183-192.Google Scholar
  47. 47.
    McGaugh, J. L. and Izquierdo, I. 2000. The contribution of pharmacology to research on the mechanisms of memory formation. Trends Pharmacol. Sci. 21(6):208-210.Google Scholar
  48. 48.
    McGaugh, J. L., Castellano, C., and Brioni, J. 1990. Picrotoxin enhances latent extinction of conditioned fear. Behav. Neurosci. 104:264-267.Google Scholar
  49. 49.
    Barros, D. M., Mello e Souza, T., De David, T., Choi, H., Aguzzoli, A., Madche, C., Ardenghi, P., Medina, J. H., and Izquierdo, I. 2001. Simultaneous modulation of retrieval by dopaminergic D1, β-noradrenergic, serotoninergic1A and cholinergic muscarinic receptors in cortical structures of the rat. Behavi. Brain Res. 124:1-7.Google Scholar
  50. 50.
    Power, A. E., Roozendaal, B., and McGaugh, J. L. 2000. Glucocorticoid enhancement of memory consolidation in the rat is blocked by muscarinic receptor antagonism in the basolateral amygdala. Eur. J. Neurosci. 10:3481-3487.Google Scholar
  51. 51.
    Roozendaal, B., de Quervain, D. J., Ferry, B., Setlow, B., McGaugh, J. L. 2001. Basolateral amygdala-nucleus accumbens interactions in mediating glucocorticoid enhancement of memory consolidation. J. Neurosci. 21(7):2518-2525.Google Scholar
  52. 52.
    de Quervain, D. J., Roozendaal, B., and McGaugh, J. L. 1998. Stress and glucocorticoids impair retrieval of long-term spatial memory. Nature 394(6695):787-790.Google Scholar
  53. 53.
    Izquierdo, I. 1989. Different forms of posttraining memory processing. Behav. Neural Biol. 51:171-202.Google Scholar
  54. 54.
    Izquierdo, L. A., Schröder, N., Ardenghi, P., Quevedo, J., Bevilaqua, L., Netto, C. A., Izquierdo, I., and Medina, J. H. 1997. Systemic administration of ACTH or vasopressin in rats reverses the amnestic effect of posttraining β-endorphin but not that of intrahippocampal infusion of protein kinase inhibitors. Neurobiol. of Learn. Mem. 68:197-202.Google Scholar
  55. 55.
    Izquierdo, I. and McGaugh, J. L. 1985. Effect of a novel experience prior to training or testing on retention of an inhibitory avoidance task in mice: involvement of an opioid system. Behav. Neural Biol. 44:228-238.Google Scholar
  56. 56.
    Izquierdo, L. A., Viola, H., Barros, D. M., Vianna, M. R. M., Furman, M., Levi de Stein, M., Szapiro, G., Rodrigues, C., Choi, H., Madche, C., Medina, J. H., and Izquierdo, I. 2001. Novelty enhances retrieval: Molecular mechanisms involved in rat hippocampus. Eur. J. Neurosc. 13:1464-1467.Google Scholar
  57. 57.
    Pavlov, I. P. 1927. Conditioned Reflexes: An investigation of the physiological activity of the cerebral cortex. GV Anrep (transl). London: Oxford Univ. Press.Google Scholar
  58. 58.
    Konorski, J. 1948. Conditioned Reflexes and Neuron Organization. Cambridge: Cambridge Univ. Press.Google Scholar
  59. 59.
    Falls, W. A., Miserendino, M. J., and Davis, M. 1992. Extinction of fear-potentiated startle: blockade by infusion of NMDA antagonist into the amygdala. J. Neurosci. 12:854-863.Google Scholar
  60. 60.
    Corcoran, K. A. and Maren, S. 2001. Hippocampal inactivation disrupts contextual retrieval of fear memory after extinction. J. Neurosci. 21(5):1720-1726.Google Scholar
  61. 61.
    Riccio, D. C. and Richardson, R. 1984. The status of memory after experimentally induced amnesias: gone but not forgotten. Physiol. Psychol. 12:59-72.Google Scholar
  62. 62.
    Ahlers, S. T., Richardson, R., West, C., and Riccio, D. C. 1989. ACTH produces long-lasting recovery following partial extinction of an active avoidance response. Behav. Neural Biol. 51(1):102-107.Google Scholar
  63. 63.
    Lu, K. T., Walker, D. L., and Davis, M. 2001. Mitogen-activated protein kinase cascade in the basolateral nucleus of amygdala is involved in extinction of fear-potentiated startle. J. Neurosci. 0: RC162 (1-5).Google Scholar
  64. 64.
    Szapiro, G., Vianna, M. R. M., McGaugh, J. L., Medina, J. H., and Izquierdo, I. 2002. The role of NMDA glutamate receptors, PKA, MAPK and CAMKII in the hippocampus in extinction of conditioned fear. Hippocampus, in press.Google Scholar
  65. 65.
    Berman, D. E. and Dudai, Y. 2001. Memory extinction, learning anew and learning the new: Dissociations in the molecular machinery of learning in the cortex. Science 291:2417-2419.Google Scholar
  66. 66.
    Lattal, K. M. and Abel, T. 2001. Different requirements for protein synthesis in acquisition and extinction of spatial preferences and context-evoked memory. J. Neurosci. 21:5773-5780.Google Scholar
  67. 67.
    Martin, S. J., Grimwood, P. D., and Morris, R. G. M. 2000. Synaptic plasticity and memory: an evaluation of the hypothesis. Ann. Rev. Neurosci. 23:649-711.Google Scholar
  68. 68.
    Cammarota, M., Bevilagua, L. R. M., Ardenghi P., Paratcha, G., Levi de Stein, M., Izquierdo, I., and Medina, J. H. 2000. Learning-associated activation of nuclear MAPK, CREB and Elk-1, along with Fos production, in the rat hippocampus after a one trial avoidance learning: abolition by NMDA receptor blockade. Mol. Brain Res. 76:36-46.Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • German Szapiro
    • 1
  • Julieta M. Galante
    • 1
  • Daniela M. Barros
    • 2
  • Miguelina Levi de Stein
    • 1
  • Monica R. M. Vianna
    • 2
  • Luciana A. Izquierdo
    • 2
  • Ivan Izquierdo
    • 2
  • Jorge H. Medina
    • 1
    • 3
  1. 1.Facultad de Medicina, UBAInstituto de Biologia Celular y NeurocienciasBuenos AiresArgentina
  2. 2.Centro de Memoria, Departamento de BioquimicaInstituto de Biociencias, UFRGSPorto AlegreBrazil
  3. 3.Departamento de Fisiología, Facultad de MedicinaUBABuenos AiresArgentina

Personalised recommendations