Journal of Paleolimnology

, Volume 28, Issue 4, pp 469–490

Postglacial midge community change and Holocene palaeotemperaturereconstructions near treeline, southern British Columbia (Canada)

  • Samantha Palmer
  • Ian Walker
  • Markus Heinrichs
  • Geoffrey Scudder
Article

Abstract

Stratigraphic analysis of fossil chironomid head capsules wasperformed at North Crater Lake and Lake of the Woods, located at treeline (2250m) in the Ashnola region of southernmost British Columbia. Priorto 10,000 yr BP, cold conditions were indicated by the lack oftemperate taxa and the presence of cold-stenotherms. The abundance anddiversity of warm-adapted taxa (e.g., Dicrotendipes,Microtendipes, Polypedilum and Cladopelma)increased rapidly after 9500 yr BP, whereas taxa indicative ofcold conditions disappeared. Beginning prior to deposition of the Mazama ash(6730 ± 40 yr BP), several warm-adapted taxa decreasedin abundance. Mid- to late-Holocene assemblages (ca. 4500yr BP to present) indicated continued cooling as revealed by afurther reduction in diversity and abundance of warm-adapted taxa atboth lakes, and the reappearance of cold-stenotherms in Lake of theWoods. Diversity changes in the cores paralleled the inferred climatic changes.Diversity was low during the late-glacial, increased in theearly-Holocene, and declined after 5400 yr BP.To quantitatively infer past climatic changes, a newweighted yphen;averaging partial-least-squares (WA-PLS)model was developed and applied to the fossil midge data. The quantitativereconstructions revealed late-glacial mean July air temperatures rangingfrom about 8 to 10°C. Summer air temperatures were highest inthe early Holocene (13 to 17°C), gradually decreasing by about3°C through the mid- to late-Holocene.

Chironomids Diversity Holocene Midges Palaeoclimatology Palaeoecology Subalpine Transfer function Treeline 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Battarbee R.W. 2000. Palaeolimnological approaches to climate change, with special regard to the biological record. Quat. Sci. Rev. 19: 107-124.Google Scholar
  2. Beer J., Mende W. and Stellmacher R. 2000. The role of the sun in climate forcing. Quat. Sci. Rev. 19: 403-415.Google Scholar
  3. Bennett J., Cumming B.F., Leavitt P.R., Chiu M., Smol J.P. and Szeicz J. 2001. A multiproxy paleolimnological perspective on climatic changes from the south-central interior of British Columbia, Canada. Quaternary Research 55: 332-343.Google Scholar
  4. Bradley R.S. 1999. Paleoclimatology: Reconstructing Climates of the Quaternary, 2nd Ed. International Geophysics Series 68. Academic Press, San Diego 613 pp.Google Scholar
  5. Bradley R.S. 2000. Past global changes and their significance for the future. Quat. Sci. Rev. 19: 391-402.Google Scholar
  6. Brodersen K.P. and Lindegaard C. 1999. Mass occurrence and sporadic distribution of Corynocera ambigua Zetterstedt (Diptera, Chironomidae) in Danish Lakes, Neo-and palaeolimnological records. J. Paleolim. 22: 41-52.Google Scholar
  7. Cheney E.S. 1997. What is the age and extent of the Cascade magmatic arc? Washington Geology 25: 28-32.Google Scholar
  8. Clague J.J. and Mathewes R.W. 1996. Neoglaciation, glacier-dammed lakes, and vegetation change in northwestern British Columbia, Canada. Arct. Alp. Res. 28: 10-24.Google Scholar
  9. Crowley T.J. 2000. Causes of climate change over the past 1000 years. Science 289: 270-277.Google Scholar
  10. Dahl S.O. and Nesje A. 1996. A new approach to calculating Holocene winter precipitation by combining glacier equilibrium-line altitudes and pine-tree limits: a case study from Hardangerjokulen, central southern Sweden. Holocene 6: 381-398.Google Scholar
  11. Evans M. 1997. Holocene Sediment Yield and Geomorphic Sensitivity in Alpine Landscapes, Cathedral Lakes, British Columbia, PhD thesis, Univ. of British Columbia, Vancouver 295 pp.Google Scholar
  12. Francis D.R. 2001. A record of hypolimnetic oxygen conditions in a temperate multi-depression lake from chemical evidence and chironomid remains. J. Paleolim. 25: 351-365.Google Scholar
  13. Fulton R.J. 1971. Radiocarbon Geochronology of Southern British Columbia. Geol. Surv. Can. Pap. 71: 37.Google Scholar
  14. Gilinsky E. 1984. The role of fish predation and spatial heterogeneity in determining benthic community structure. Ecology 65: 455-468.Google Scholar
  15. Grimm E.C. 1987. CONISS: a FORTRAN-77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Comp. Geosci. 13: 13-35.Google Scholar
  16. Grimm E.C. 1991. TILIA GRAPH 2.0 version b.5. (Unreleased) Illinois State Museum, Research and Collections Center, Springfield, Illinois.Google Scholar
  17. Grimm E.C. 1993. TILIA 2.0 version b.4. Illinois State Museum, Research and Collections Center, Springfield, Illinois.Google Scholar
  18. Hallett D.J., Hills L.V. and Clague J.J. 1997. New accelerator mass spectrometry radiocarbon ages for the Mazama tephra layer from Kootenay National Park, British Columbia, Canada. Can. J. Earth Sci. 34: 1202-1209.Google Scholar
  19. Hebda R.J. 1982. Postglacial history of grasslands of southern British Columbia and adjacent regions. In: Nicholson A.C., McLean A. and Baker T.E. (eds), Grassland Ecology and Classification Symposium Proceedings. B. C. Ministry of Forests, Victoria., pp. 157-191.Google Scholar
  20. Hebda R.J. 1995. British Columbia vegetation and climate history with focus on 6ka BP. Géographie phys. Quat. 49: 55-79.Google Scholar
  21. Heinrichs M.L. 1999. A Late-Quaternary Paleoecological Analysis in the Engelmann Spruce-Subalpine Fir Biogeoclimatic Zone of the Okanagan/Ashnola Region, British Columbia, Canada, PhD thesis, University of Victoria, Victoria, B.C. 208 pp.Google Scholar
  22. Heinrichs M.L., Wilson S.E., Walker I.R., Smol J.P., Mathewes R.W. and Hall K.J. 1997. Midge-and diatom-based palaeosalinity reconstructions for Mahoney Lake, Okanagan Valley, British Columbia, Canada. Int. J. Salt Lake Res. 6: 249-267.Google Scholar
  23. Heinrichs M.L., Walker I.R., Mathewes R.W. and Hebda R.J. 1999. Holocene chironomid-inferred salinity and paleovegetation reconstruction from Kilpoola Lake, British Columbia. Géographie phys. Quat. 53: 211-221.Google Scholar
  24. Heinrichs M.L., Walker I.R. and Mathewes R.W. 2001. Chironomid-based paleosalinity records in southern British Columbia, Canada: a comparison of transfer functions. J. Paleolim. 26: 147-159.Google Scholar
  25. Heinrichs M.L., Hebda R.J., Walker I.R. and Palmer S.L. 2002. Postglacial paleoecology and inferred paleoclimatology of the Engelmann Spruce-Subalpine Fir forest of south-central British Columbia, Canada. Palaeogeography, Palaeoclimatology, Palaeoecology 184: 347-369.Google Scholar
  26. Heiri O. and Lotter A. 2001. Effect of low count sums on quantitative environmental reconstructions: an example using subfossil chironomids. J. Paleolim. 26: 343-350.Google Scholar
  27. Hoffman R.L., Liss W.J., Larson G.L., Deimling E.K. and Lomnicky G.A. 1996. Distribution of nearshore macroinvertebrates in lakes of the Northern Cascade Mountains, Washington, USA. Arch. Hydrobiol. 136: 363-389.Google Scholar
  28. Ilyashuk B.P. and Ilyashuk E.A. 2001. Response of alpine chironomid communities (Lake Chuna, Kola Peninsula, north-western Russia) to atmospheric contamination. J. Paleolim. 25: 465-475.Google Scholar
  29. IPCC 2001. Climate Change 2001: The Scientific Basis. Summary for Policymakers: A Report of Working Group I of the Intergovernmental Panel on Climate Change. http://www.ipcc.ch/pub/spm22-01.pdf.Google Scholar
  30. Jongman R.H.G., ter Braak C.J.F. and van Tongeren O.F.R. 1987. Data Analysis in Community and Landscape Ecology. Center for Agricultural Publishing and Documentation, Wageningen.Google Scholar
  31. Juggins S. and ter Braak C.J.F. 1996. WAPLS version 1.1 (Computer Software).Google Scholar
  32. Juggins S. and ter Braak C.J.F. 1997. CALIBRATE version 0.82 (Computer Software).Google Scholar
  33. Koerner R.M. and Fisher D. 1990. A record of Holocene summer climate from a Canadian high Arctic ice core. Nature 343: 630-631.Google Scholar
  34. Krebs C.J. 1994. Ecology: The Experimental Analysis of Distribution and Abundance. 4th edn. HarperCollins, New York.Google Scholar
  35. Larocque I. 2001. How many chironomid head capsules are enough? A statistical approach to determine sample size for palaeoclimatic reconstructions. Palaeogeography, Palaeoclimatology, Palaeoecology 172: 133-142.Google Scholar
  36. Larocque I., Hall R. and Grahn E. 2001. Chironomids as indicators of climate change: a 100 lake training set from a subarctic region of northern Sweden (Lapland). J. Paleolim. 26: 307-322.Google Scholar
  37. Lauritzen S.E. 1996. Calibration of speleothem stable isotopes against historical records: a Holocene temperature curve for north Norway? In: Lauritzen S.-E. (ed.), Climatic Change: the Karst Record Vol. 2. Karst Waters Institute Special Publication, Charles Town, pp. 78-80.Google Scholar
  38. Lauritzen S.-E. and Lundberg J. 1998. Rapid temperature variations and volcanic events during the Holocene from a Norwegian speleothem record. Past Global Changes and their Significance for the Future.Volume of Abstracts IGBP-PAGES Bern 00, 88.Google Scholar
  39. Levesque A.J., Mayle F.E, Walker I.R. and Cwynar L.C. 1993. A previously unrecognized late-glacial cold event in eastern North America. Nature 361: 623-626.Google Scholar
  40. Levesque A.J., Cwynar L.C. and Walker I.R. 1996. Richness, diversity and succession of late-glacial chironomid assemblages in New Brunswick, Canada. J. Paleolim. 16: 257-274.Google Scholar
  41. Little J. and Smol J.P. 2001. A chironomid-based model for inferring late-summer hypolimnetic oxygen in southeastern Ontario lakes. J. Paleolim. 26: 259-279.Google Scholar
  42. Lloyd D., Angrove K., Hope G. and Thompson C. 1990. A Guide to Site Identification for the Kamloops Forest Region. British Columbia Ministry of Forests, Victoria.Google Scholar
  43. Lotter A.F., Walker I.R., Brooks S.J. and Hofmann W. 1999. An intercontinental comparison of chironomid palaeotemperature inference models: Europe vs North America. Quat. Sci. Rev. 18: 717-735.Google Scholar
  44. Luckman B.H. 1993. Glacier fluctuations and tree-ring records for the last millennium in the Canadian Rockies. Quat. Sci. Rev. 12: 441-450.Google Scholar
  45. Luckman B.H. 1998. Landscape and climate change in the central Canadian Rockies during the 20th century. Can. Geographer 42: 319-36.Google Scholar
  46. Luckman B.H. 2000. The Little Ice Age in the Canadian Rockies. Geomorphology 32: 357-384.Google Scholar
  47. Luckman B.H. and Kearney M.S. 1986. Reconstruction of Holocene changes in alpine vegetation and climate in the Maligne Range, Jasper National Park, Alberta. Quat. Res. 26: 244-261.Google Scholar
  48. Mathewes R.W. 1985. Paleobotanical evidence for climatic change in southern British Columbia during late-glacial and Holocene time. In: Harrington C.R. (ed.), Climate Change in Canada 5: Critical Periods in the Quaternary Climatic History of Northwestern North America. Syllogeus 55: 397-422.Google Scholar
  49. Mathewes R.W. and Heusser L.E. 1981. A 12 000 year palynological record of temperature and precipitation trends in southwestern British Columbia. Can. J. Bot. 59: 707-710.Google Scholar
  50. Mathewes R.W. and King M. 1989. Holocene vegetation, climate and lake-level changes in the Interior Douglas-fir biogeoclimatic zone, British Columbia. Can. J. Earth Sci. 26: 1811-1825.Google Scholar
  51. Meidinger D. and Pojar J. 1991. Ecosystems of British Columbia. British Columbia Ministry of Forests, Victoria.Google Scholar
  52. Oliver D.R. and Roussel M.E. 1983. The Insects and Arachnids of Canada, Part 11: The Genera of Larval Midges of Canada; Diptera: Chironomidae. Agric. Can. Publ. 1746.Google Scholar
  53. Palmer S.L. 1998. Subfossil chironomids (Insecta:Diptera) and climatic change at high elevation lakes in the Engelmann Spruce-Subalpine Fir zone in southwestern British Columbia, MSc thesis, Univ. British Columbia, Vancouver 105 pp.Google Scholar
  54. Pellatt M.G., Smith M.J., Mathewes R.W. and Walker I.R. 1998. Paleoecology of postglacial treeline shifts in the northern Cascade Mountains, Canada. Palaeogeogr. Palaeoclim. Palaeoecol. 141: 123-138.Google Scholar
  55. Pellatt M.G., Smith M.J., Mathewes R.W., Walker I.R. and Palmer S.L. 2000. Holocene tree line and climate change in the subalpine zone near Stoyoma Mountain, Cascade Mountains, south western British Columbia, Canada. Arct. Antarct. Alp. Res. 32: 73-83.Google Scholar
  56. Pinder L.C.V. 1986. Biology of freshwater Chironomidae. Annual Rev. Entomol. 31: 1-23.Google Scholar
  57. Pinder L.C.V. 1986. The habitats of chironomid larvae. In: Armitage P.D., Cranston P.S. and Pinder L.C.V. (eds), The Chironomidae: The Biology and Ecology of Non-biting Midges. Chapman and Hall, London, pp. 107-135.Google Scholar
  58. Porinchu D.F. and Cwynar L. 2002. Late-Quaternary history of midge communities and climate from a tundra site near the lower Lena River, Northeast Siberia. J. Paleolim. 27: 59-69.Google Scholar
  59. Quinlan R. and Smol J.P. 2001. Setting minimum head capsule abundance and taxa deletion criteria in chironomid-based inference models. J. Paleolim. 26: 327-342.Google Scholar
  60. Quinlan R., Smol J.P. and Hall R.I. 1998. Quantitative inferences of past hypolimnetic anoxia in south-central Ontario lakes using fossil midges (Diptera: Chironomidae). Can. J. Fish. Aquat. Sci. 55: 587-596.Google Scholar
  61. Read P.B., Woodsworth G.J., Greenwood H.J., Ghert E.D. and Evenchick C.A. 1991. Metamorphic Map of the Canadian Cordillera. Geological Survey of Canada, Map 1714A, scale 1:2,000,000.Google Scholar
  62. Rhodes T.E. and Davis R.B. 1995. Effects of late Holocene forest disturbance and vegetation change on acidic Mud Pond, Maine, USA. Ecology 76: 734-746.Google Scholar
  63. Ritchie J.C., Cwynar L.C. and Spear R.W. 1983. Evidence from north-west Canada for an early Holocene Milankovitch thermal maximum. Nature 305: 126-128.Google Scholar
  64. Ryder J.M. 1989. Holocene glacier fluctuations (Canadian Cordillera). In: Fulton R.J. (ed.), Quaternary Geology of Canada and Greenland. Geological Survey of Canada, Ottawa, pp. 74-76.Google Scholar
  65. Sæther O.A. 1979. Chironomid communities as water quality indicators. Holarct. Ecol. 2: 65-74.Google Scholar
  66. Smith M.J., Pellatt M.G., Walker I.R. and Mathewes R.W. 1998. Postglacial changes in chironomid communities and inferred climate near treeline at Mount Stoyoma, Cascade Mountains, southwestern British Columbia, Canada. J. Paleolim. 20: 277-293.Google Scholar
  67. Smol J.P. 1981. Problems associated with the use of ''species diversity'' in paleolimnolocial studies. Quaternary Research 15: 209-212.Google Scholar
  68. Strahler A.H. and Strahler A.N. 1992. Modern Physical Geography. 4th edn. John Wiley and Sons, New York.Google Scholar
  69. Stuiver M. and Reimer P.J. 1993. Extended 14C database and revised CALIB radiocarbon calibration program. Radiocarbon 35: 215-230.Google Scholar
  70. ter Braak C.J.F. 1991. CANOCO version 3.12 (Computer Software).Google Scholar
  71. Walker I.R. and Paterson C.G. 1983. Post-glacial chironomid succession in two small, humic lakes in the New Brunswick-Nova Scotia (Canada) border area. Freshwat. Invertebr. Biol. 2: 61-73.Google Scholar
  72. Walker I.R. 1987. Chironomidae (Diptera) in paleoecology. Quat. Sci. Rev. 6: 29-40.Google Scholar
  73. Walker I.R. 1988. Late-Quaternary palaeoecology of Chironomidae (Diptera: Insecta) from lake sediments in British Columbia, PhD thesis, Simon Fraser Univ., Burnaby 204 pp.Google Scholar
  74. Walker I.R. 1990. Modern assemblages of arctic and alpine Chironomidae as analogues for late-glacial communities. Hydrobiologia 214: 223-227.Google Scholar
  75. Walker I.R., Smol J.P., Engstrom D.R. and Birks H.J.B. 1991a. An assessment of Chironomidae as qualitative indicators of past climatic change. Can. J. Fish. Aquat. Sci. 48: 975-987.Google Scholar
  76. Walker I.R., Mott R.J. and Smol J.P. 1991b. Allerød-Younger Dryas lake temperatures from midge fossils in Atlantic Canada. Science 253: 1010-1012.Google Scholar
  77. Walker I.R., Reavie E.D., Palmer S. and Nordin R.N. 1993. A palaeoenvironmental assessment of human impact on Wood Lake, Okanagan Valley, British Columbia, Canada. Quat. International 20: 51-70.Google Scholar
  78. Walker I.R. 2001. Midges: Chironomidae and related Diptera. In: Smol J.P., Birks H.J.B. and Last W.M. (eds), Tracking Environmental Change using Lake SedimentsVol. 4. Kluwer Academic, Dordrecht Zoological Indicators., pp. 43-66.Google Scholar
  79. Walker I.R. and MacDonald G.M. 1995. Distributions of Chironomidae (Insecta: Diptera) and other freshwater midges with respect to treeline, Northwest Territories, Canada. Arct. Alp. Res. 27: 258-263.Google Scholar
  80. Walker I.R. and Mathewes R.W. 1987. Chironomidae (Diptera) and postglacial climate at Marion Lake, British Columbia, Canada. Quat. Res. 27: 89-102.Google Scholar
  81. Walker I.R. and Mathewes R.W. 1988. Late-Quaternary fossil Chironomidae (Diptera) from Hippa Lake, Queen Charlotte Islands, British Columbia, with special reference to Corynocera Zett. Can. Entomol. 120: 739-751.Google Scholar
  82. Walker I.R. and Mathewes R.W. 1989a. Early postglacial chironomid succession in southwestern British Columbia, Canada, and its paleoenvironmental significance. J. Paleolim. 2: 1-14.Google Scholar
  83. Walker I.R. and Mathewes R.W. 1989b. Chironomidae (Diptera) remains in surficial lake sediments from the Canadian Cordillera: analyses of fauna across an altitudinal gradient. J. Paleolim. 2: 61-80.Google Scholar
  84. Walker I.R., Fernando C.H. and Paterson C.G. 1985. Associations of Chironomidae (Diptera) of shallow, acid, humic lakes and bog pools in Atlantic Canada, and a comparison with an earlier paleoecological investigation. Hydrobiologia 120: 11-22.Google Scholar
  85. Walker I.R., Levesque A.J., Cwynar L.C. and Lotter A.F. 1997. An expanded surface-water palaeotemperature inference model for use with fossil midges from eastern Canada. J. Paleolim. 18: 165-178.Google Scholar
  86. Wheeler J.O., Brookfield A.J., Gabrielse H., Monger J.W.H., Tipper H.W. and Woodsworth G.J. 1991. Terrane Map of the Canadian Cordillera. Geological Survey of Canada, Map 1713A, scale 1:2,000,000.Google Scholar
  87. Wiederholm T. (ed.) 1983. Chironomidae of the Holarctic Region, Keys and Diagnoses: Part 1-Larvae. Entomol. scand. Suppl 19. 1-457.Google Scholar
  88. Wilson J.B., Ullmann I. and Bannister P. 1996. Do species assemblages ever recur? J. Ecol. 84: 471-474.Google Scholar
  89. Wright H.E. Jr. 1967. A square-rod piston sampler for lake sediments. Journal of Sedimentary Petrology 37: 975-976.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Samantha Palmer
    • 1
  • Ian Walker
    • 3
  • Markus Heinrichs
    • 3
  • Geoffrey Scudder
    • 2
  1. 1.Department of BiologyDouglas CollegeNew WestminsterCanada
  2. 2.Department of ZoologyUniversity of British ColumbiaVancouverCanada
  3. 3.Departments of Biology, and Earth and Environmental SciencesOkanagan University CollegeKelownaCanada

Personalised recommendations