Journal of Radioanalytical and Nuclear Chemistry

, Volume 254, Issue 2, pp 319–329 | Cite as

A comparison of the capacity of FA-ICP-MS and FA-INAA

  • L. P. Bédard
  • S.-J. Barnes


The platinum-group elements (PGEs) are commonly determined by INAA and ICP-MS after a NiS fire assay preconcentration. The results of the initial “round robin” for the PGEs and gold were examined for geological Canadian reference materials (WGB-1, TDB-1, UMT-1, WPR-1, WMG-1, and WMS-1). The Au accuracy is generally within 15% for both methods. For Ir, Os, Pd, Pt and Rh the accuracy for most samples is better than 10% for FA-ICP-MS and FA-INAA (true only for sulfide-bearing samples in the case of FA-INAA). Ru is not very accurate by either methods. Ru and Au have problems with precision which is interpreted to be related to the loss of gold in the dissolution step and for Ru, the source of the problem is not yet understood. Kurtosis show that FA-INAA has higher clustering than FA-ICP-MS for most analytes. It suggests a slightly better precision for FA-INAA. This is explained by the robustness of INAA after the NiS preconcentration despite its lower instrumental precision versus the complex dissolution steps involved in ICP-MS. For samples richer in PGEs (sulfide- and/or oxide-bearing rocks) both methods perform adequately but for low PGEs concentration samples (crustal rocks) ICP-MS shows an advantage.


Sulfide INAA Concentration Sample Good Precision Crustal Rock 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. J. NALDRETT, Magmatic Sulphide Deposits, Oxford University Press, New York, 1989.Google Scholar
  2. 2.
    S.-J. BARNES, W. D. MAIER, Geol. Assoc. Can., Short Course, 13 (1999) 69.Google Scholar
  3. 3.
    S.-J. BARNES, M. ZIENTEK, M. SEVENSEN, Can. J. Earth Sci., 34 (1997) 337.Google Scholar
  4. 4.
    L. ALVAREZ, W. ALVAREZ, F. ASARO, H. MICHEL, Science, 208 (1980) 1095.Google Scholar
  5. 5.
    N. Evans, D. Gregoire, R. Grieve, W. Goodfellow, J. Veizer, Geochim. Cosmochim. Acta, 57 (1993) 3737.Google Scholar
  6. 6.
    R. H. MitchelL, R. R. KEAYS, Geochim. Cosmochim. Acta, 45 (1981) 2425.Google Scholar
  7. 7.
    H. E. NEWSOM, Accretion and core formation in the earth: evidence from siderophile elements, in: Origin of the Earth, H. E. NEWSOM (Ed.), Oxford, 1990, p. 273.Google Scholar
  8. 8.
    F. ALT, A. BAMBAUER, HOPPSTOCK, Fresenius' J. Anal. Chem., 346 (1993) 696.Google Scholar
  9. 9.
    J. MESSERSCHMIDT, F. ALT, G. TöLG, Anal. Chim. Acta, 191 (1984) 161.Google Scholar
  10. 10.
    P. J. POTTS, A Handbook of Silicate Rock Analysis, Blackie Academic Professional, London, 1987.Google Scholar
  11. 11.
    R. V. D. ROBERT, E. VAN WYK, R. PALMER, Concentration of the Noble Metals by a Fire-assay Technique Using NiS as the Collector, Technical Report 1371, National Institute of Metallurgy, Johannesburg, S.A., 1971.Google Scholar
  12. 12.
    I. MCDONALD, Geostand. Newsl., 22 (1998) 85.Google Scholar
  13. 13.
    M. THOMPSON, P. J. LOWTHIAN, J. AOAC Int., 80 (1997) No. 3, 676.Google Scholar
  14. 14.
    I. SHAZALI, L. VAN'T DACK, R. GIJBELS, Anal. Chim. Acta, 196 (1987) 49.Google Scholar
  15. 15.
    I. MCDONALD, M. TREDOUX, R. J. HART, J. Radioanal. Nucl. Chem., 198 (1995) 169.Google Scholar
  16. 16.
    G. REVEL, S. AYRAULT, J. Radioanal. Nucl. Chem., 244 (2000) 73.Google Scholar
  17. 17.
    F. DAI KIN, M. I. PRUDÊNCIO, M. Â. GOUVEIA, E. MAGNUSSON, Geostand. Newsl., 23 (1999) 47.Google Scholar
  18. 18.
    S. E. JACKSON, B. J. FRYER, W. GOSSE, D. C. HEALEY, H. P. LONGERICH, D. F. STRONG, Chem. Geol., 83 (1990) 119.Google Scholar
  19. 19.
    H.-G. PLESSEN, J. ERZINGER, Geostand. Newsl., 22 (1998) 187.Google Scholar

Copyright information

© Kluwer Academic Publishers/Akadémiai Kiadó 2002

Authors and Affiliations

  • L. P. Bédard
    • 1
  • S.-J. Barnes
    • 1
  1. 1.Sciences de la TerreUniversité du Québec à ChicoutimiChicoutimiCanada

Personalised recommendations