Natural Resources Research

, Volume 8, Issue 1, pp 3–26 | Cite as

Burial, Maturation, and Petroleum Generation History of the Arkoma Basin and Ouachita Foldbelt, Oklahoma and Arkansas

  • Alan P. ByrnesEmail author
  • Gary Lawyer


Removed overburden, burial, maturation, and petroleum generation analysis indicates that maturity in the Arkoma Basin and the Ouachita Foldbelt is explained effectively using simple burial models that account for the significant surface erosion that has occurred and assuming geothermal gradients similar to present-day gradients have been approximately constant through geologic time. Regional models, based on analysis at 115 well locations, indicate that from 5,000 to 15,000 ft (1.5–4.5 km) of section, differing with location from north to south and west to east, has been removed from the Arkoma Basin region, and as much as 25,000–40,000 ft (7.5–12 km) have been removed from areas of the Ouachita Foldbelt. Based on burial and thermal history reconstruction, increasing maturation from west to east across the basin is primarily the result of increasing overburden and subsequent surface erosion from west to east. The models predict most publicly available vitrinite reflectance data within a factor of 1.5 at two standard deviations. Comparison of model and measured reflectance-depth trends in six wells indicates that hydrothermal fluid movement should not have modified reflectance by more than approximately 20% in the center of the basin. Analysis indicates that most of the basin is overmature for oil production from intervals below the Spiro Sandstone, except to the north and northwest. Although thermal maturities are high, methane is stable throughout the basin. Except for the basal Arbuckle Group, all formations were thermally immature for oil generation prior to burial by the Mississippian and Morrowan in the Ouachita Foldbelt of Oklahoma and by the Atokan and Desmoinesian over most of the basin and study area. In the deeper part of the present basin, all strata entered and passed through the oil window during or within 10 My after Atokan time. Because no additional major quantities of hydrocarbons were generated after Atokan time, the hydrocarbons must have been emplaced and trapped during this brief time interval.

Arkoma Basin Ouachita thermal maturity vitrinite erosion petroleum generation basin analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arbenz, J. K., 1989, The Ouachita system, in Bally, A. W., and Palmer, A. R., eds., The Geology of North America, Vol. A, The Geology of North America--An Overview: Geol. Soc. America, p. 371-396.Google Scholar
  2. Arne, D. C., 1992, Evidence from apatite fission track analysis for regional Cretaceous cooling in the Ouachita Mountain fold belt and Arkoma Basin of Arkansas: Am. Assoc. Petroleum Geologists Bull., v. 76,no. 3, p. 392-402.Google Scholar
  3. Athy, L. F., 1930, Density, porosity, and compaction of sedimentary rocks: Am. Assoc. Petroleum Geologists Bull., v. 14,no. 1, p. 1-24.Google Scholar
  4. Baird, R. A., 1986, Maturation and source rock evaluation of Kimmeridge clay, Norwegian North Sea: Am. Assoc. Petroleum Geologists Bull., v. 70,no. 1, p. 1-11.Google Scholar
  5. Baldwin, B., and Butler, C. O., 1985, Compaction curves: Am. Assoc. Petroleum Geologists Bull., v. 69,no. 4, p. 622-626.Google Scholar
  6. Bethke, C. M., and Marshak, S., 1990, Brine migration across North America--the plate tectonics of groundwater: Ann. Rev. Earth and Planetary Science, v. 18, p. 287-315.Google Scholar
  7. Bethke, C. M., Harrison, W. J., Upson, C., and Altaner, S. P., 1988, Supercomputer analysis of sedimentary basins: Science, v. 239,no. 4837, p. 261-267.Google Scholar
  8. Burgess, J. D., 1974, Microscopic examination of kerogen in petroleum exploration: Geol. Soc. America Spec. Paper 153, p. 19-30.Google Scholar
  9. Burnham, A. K., and Braun, R. L., 1985, Genetic kinetic model of oil shale pyrolysis: In Situ, v. 9,no. 1, p. 1-23.Google Scholar
  10. Burnham, A. K., and Braun, R. L., 1987, Analysis of chemical reaction kinetics using a distribution of activation energies and simpler models: Energy and Fuels, v. 1,no. 1, p. 153-161.Google Scholar
  11. Burnham, A. K., and Braun, R. L., 1989, Development of a detailed model of petroleum formation, destruction, and expulsion from lacustrine and marine source rocks: Advances in Organic Geochemistry, v. 16,no. 1–3, p. 27-39.Google Scholar
  12. Burnham, A. K., and Sweeney, J. J, 1991, Modeling the maturation and migration of petroleum, in Merrill, R. K., ed., Source of Migration Processes and Evaluation Techniques: Am. Assoc. Petroleum Geologists Treatise on Petroleum Geology, p. 55-63.Google Scholar
  13. Bush, W. V., and Colton, G. W., 1982, Data for assessment of federal coal resources of Arkansas: Arkansas Geol. Communications Inform. Circ. 20-M, 240 p.Google Scholar
  14. Cardott, B. J., Hemish, L. A., Johnson, C. R., and Luza, K. V., 1986, The relationship between coal rank and present geothermal gradient in the Arkoma Basin, Oklahoma: Oklahoma Geol. Survey Spec. Publ. 86-4, 65 p.Google Scholar
  15. Carr, J. L., III, 1987, The thermal maturity of the Chattanooga Formation along a transect from the Ozark Uplift to the Arkoma Basin: Shale Shaker, v. 38,no. 3, p. 32-40.Google Scholar
  16. Cathles, L. M., 1993, A discussion of flow mechanisms responsible for alteration and mineralization in the Cambrian aquifers of the Ouachita-Arkoma Basin-Ozark system, in Horbury, A. D., and Robinson, A. G., eds., Diagenesis and Basin Development: Am. Assoc. Petroleum Geologists Studies in Geology, p. 99-112.Google Scholar
  17. Cheung, P. K., 1978, The geothermal gradient in sedimentary rocks in Oklahoma: unpubl. masters thesis, Oklahoma State Univ., 55 p.Google Scholar
  18. Cluff, R. M., and Byrnes, A. P., 1991, Lopatin analysis of maturation and petroleum generation in the Illinois basin, in Leighton, M., ed., Interior Cratonic Basins, Am. Assoc. Petroleum Geologists Mem. 51, p. 425-454.Google Scholar
  19. Comer, J. B., 1992, Organic geochemistry and paleogeography of upper Devonian formations in Oklahoma and northwestern Arkansas: Oklahoma Geol. Survey Circ. 93, p. 70-93.Google Scholar
  20. Comer, J. B., and Hinch, H. H., 1987, Recognizing and quantifying expulsion of oil from the Woodford Formation and age-equivalent rocks in Oklahoma and Arkansas: Am. Assoc. Petroleum Geologists Bull., v. 71,no. 7, p. 844-858.Google Scholar
  21. Coveney, R. M., Jr., 1992, Evidence for expulsion of hydrothermal fluids and hydrocarbons in the Midcontinent during the Pennsylvanian: Oklahoma Geol. Survey Circ. 93, p. 133-143.Google Scholar
  22. Curiale, J. A., 1983, Petroleum occurrences and source-rock potential of the Ouachita Mountains southeastern Oklahoma: Oklahoma Geol. Survey Bull. 135, 65 p.Google Scholar
  23. Curiale, J. A., and Harrison, W. E., 1981, Correlation of oil and asphaltite in Ouachita Mountain region of Oklahoma: Am. Assoc. Petroleum Geologists Bull., v. 65,no. 11, p. 2426-2432.Google Scholar
  24. Dembicki, H., Jr., 1987, An interlaboratory comparison of source rock data: Geochimica et Cosmochimica Acta, v. 48,no. 12, p. 2641-2649.Google Scholar
  25. Deming, D., and Nunn, J. A., 1991, Numerical simulation of brine migration by topographically driven recharge: Jour. Geophysical Res., v. 96,no. B2, p. 2485-2499.Google Scholar
  26. Desborough, G. A., Zimmerman, R. A., Elrich, M., and Stone, C. G., 1985, Early Permian thermal alteration of Carboniferous strata in the Ouachita Region and Arkansas River Valley, Arkansas (abst.): Geol. Soc. America Abstracts with Programs, v. 17,no. 3, p. 155.Google Scholar
  27. Dickinson, G., 1953, Geol. aspects of abnormal reservoir pressures in Gulf Coast Louisiana: Am. Assoc. Petroleum Geologists Bull., v. 37,no. 2, p. 410-432.Google Scholar
  28. Dow, W. G., and O'Connor, D. I., 1982, Kerogen maturity and type by reflected light microscopy applied to petroleum exploration, in Staplin, F. L., Dow, W. G., Milner, C. W. D., O'Connor, D. I., Pocock, S. A. J., van Gijzel, P., Welte, D. H., and Yukler, M. A., eds., How to Assess Maturation and Paleotemperatures: Soc. Econ. Paleontologists and Mineralogists Short Course 7, p. 133-157.Google Scholar
  29. Faust, L. Y., 1951, Seismic velocity as a function of depth and geologic time: Geophysics, v. 16,no. 1, p. 192-207.Google Scholar
  30. Faust, L. Y., 1953, A velocity function including lithologic variation: Geophysics, v. 18,no. 2, p. 271-288.Google Scholar
  31. Fulton, D. A., 1985, Sedimentology, structure, and thermal maturity of the Lower Atoka Formation, Ouachita Frontal Thrust Belt, Yell an Perry Counties, Arkansas: unpubl. masters thesis, Univ. Missouri-Columbia, 151 p.Google Scholar
  32. Garven, G., Ge, S., Person, M. A., and Sverjensky, D. A., 1993, Genesis of stratabound ore deposits in the midcontinent basins of North America, I. The role of regional groundwater flow: Am. Jour. Science, v. 293,no. 6, p. 497-568.Google Scholar
  33. Ge, S., and Garven, G., 1992, Hydromechanical modeling of tectonically driven groundwater flow with application to the Arkoma foreland basin: Jour. Geophysical Res., v. 97,no. B6, 9119-9144.Google Scholar
  34. Habicht, J. K. A., 1979, Paleoclimate, paleomagnetism, and continental drift: Am. Assoc. Petroleum Geologists Studies in Geology 9, 31 p.Google Scholar
  35. Halley, B. R., 1988, Restored thickness map of Atoka Formation, west-central Arkansas: Arkansas Geol. Communications Oil and Gas Chart No. 7.Google Scholar
  36. Harrison, W. E., and Luza, K. V., 1986, Temperature-gradient information for several boreholes drilled in Oklahoma: Oklahoma Geol. Survey Spec. Publ. 86-2, 42 p.Google Scholar
  37. Hendrick, S. J., 1992, Vitrinite reflectance and deep Arbuckle maturation at Wilburton field, Latimer County, Oklahoma: Oklahoma Geol. Survey Circ. 93, p. 176-184.Google Scholar
  38. Houseknecht, D. W., and Matthews, S. M., 1985, Thermal maturity of Carboniferous strata, Ouachita Mountains: Am. Assoc. Petroleum Geologists Bull., v. 69,no. 3, p. 335-345.Google Scholar
  39. Houseknecht, D. W., Hathon, L. A., and McGilvery, T. A., 1992, Thermal maturity and Paleozoic strata in the Arkoma Basin: Oklahoma Geol. Survey Circ. 93, p. 122-132.Google Scholar
  40. Houseknecht, D. W., Bensley, D. F., Hathon, L. A., and Kastens, P. H., 1993, Rotational reflectance properties of Arkoma Basin dispersed vitrinite; insights for understanding reflectance populations in high thermal maturity regions: Organic Geochemistry, v. 20,no. 2, p. 187-196.Google Scholar
  41. Issler, D. R., 1992, A new approach to shale compaction and stratigraphic restoration, Beaufort-Mackenzie Basin and Mackenzie Corridor, northern Canada: Am. Assoc. Petroleum Geologists Bull., v. 76,no. 8, p. 1170-1189.Google Scholar
  42. Johnson, K. S., and Cardott, B. J., 1992, Geologic framework and hydrocarbon source rocks in Oklahoma: Oklahoma Geol. Survey Circ. 93, p. 21-37.Google Scholar
  43. Johnson, K. S., Amsden, T. W., Denison, R. E., Dutton, S. P., Goldstein, A. G., Rascoe, B. Jr., Sutherland, P. K., and Thompson, D. M., 1989, Geology of the southern Midcontinent: Oklahoma Geol. Survey Spec. Publ. 89-2, 53 p.Google Scholar
  44. Jordan, L., 1983, Petroleum-impregnated rocks and asphaltite deposits of Oklahoma: Oklahoma Geol. Survey Map GM-8.Google Scholar
  45. Lang, W. H., Jr., 1978. The determination of prior depth of burial (uplift and erosion) using interval transit time: Trans. Soc. Prof. Well Log Analysts 19th Ann. Logging Symp. (El Paso, TX), p. 1-17.Google Scholar
  46. Lang, W. H., Jr., 1980, Determination of prior depth of burial using interval transit time: The Oil and Gas Jour., v. 78,no. 4, p. 222-230.Google Scholar
  47. Leach, D. L., and Rowan, E. L., 1986, Genetic link between Ouachita foldbelt tectonism and the Mississippi Valley-type leadzinc deposits of the Ozarks: Geology, v. 14,no. 11, p. 931-935.Google Scholar
  48. Leach, D. L., Rowan, E. L., and Viets, J. G., 1991, Fluid-inclusion evidence for the source of ore fluids for Mississippi valley-type deposits in Missouri, Arkansas, Kansas, and Oklahoma, in Martin, J. A., and Pratt, W. P., eds., Geology and mineral-resource assessment of the Springfield 1 degrees × 2 degrees Quadrangle, Missouri, as appraised in September 1985: U.S. Geol. Survey Bull. 1942, p. 87-89.Google Scholar
  49. Lee, Y., Deming, D., and Chen, K. F., 1996, Heat flow and heat production in the Arkoma Basin and the Oklahoma Platform, southeastern Oklahoma: Jour. Geophysical Res., v. 101,no. B11, p. 25, 387-25,401.Google Scholar
  50. Lopatin, H. V., 1971, Temperature and geologic time as factors in coalification (in Russian): Izvestiia Akadamia Nauk SSSR, Seriya Geologicheskaya, no. 3, p. 95-106.Google Scholar
  51. Lowenstam, H. A., 1963, Paleotemperatures of the Permian and Cretaceous periods, in Nairn, A. E. M., ed., Problems in Paleoclimatology: NATO Paleoclimates Conference (Newcastle-upon-Tyne-Durham), p. 227-252.Google Scholar
  52. Luza, K. V., Harrison, W. E., Laguros, G. A., Pratter, M. L., and Cheung, P. K., 1984, Geothermal resources and temperature gradients of Oklahoma: Oklahoma Geol. Survey Map GM-7.Google Scholar
  53. Magara, K., 1976, Thickness of removed sedimentary rocks, paleopore pressure, and paleotemperature, southwestern part of Western Canada Basin: Am. Assoc. Petroleum Geologists Bull., v. 60,no. 4, p. 544-565.Google Scholar
  54. Mankin, C. J., and others, 1987, Correlation of stratigraphic units in North America, Texas-Oklahoma tectonic region: Am. Assoc. Petroleum Geologists Correlation Chart Series--TOT.Google Scholar
  55. Matthews, S. M., 1982, Thermal maturity of Carboniferous strata, Ouachita thrust fault belt: unpubl. masters thesis, Univ. Missouri-Columbia, 88 p.Google Scholar
  56. Morris, R. C., 1974, Carboniferous rocks of the Ouachita Mountains, Arkansas: a study of facies patterns along the unstable slope and axis of a flysch trough, Geol. Soc. America Spec. Paper 148, p. 241-279.Google Scholar
  57. Oliver, J., 1986, Fluids expelled from orogenic belts: their role in hydrocarbon migration and other geologic phenomena: Geology, v. 14,no. 2, p. 99-102.Google Scholar
  58. Poole, L. A., 1985, Sedimentology, structural style, and thermal maturity of the Lynn Mountain Formation, frontal Ouachitas, Latimer and LeFlore Counties, Oklahoma: unpubl. masters thesis, Univ. Missouri-Columbia, 188 p.Google Scholar
  59. Rahman, M., Majorowicz, J. A., Bosse, V., and Jones, F. W., 1985, Some implications of organic maturation modelling in southcentral Alberta: Can. Petroleum Geol. Bull., v. 33,no. 4, p. 396-409.Google Scholar
  60. Royden, L., Horvath, F., Nagymarosy, A., and Stegeno, L., 1983, Evolution of the Pannonian Basin system; 2, subsidence and thermal history: Tectonics, v. 2,no. 1, p. 91-137.Google Scholar
  61. Ruble, T. E., and Philp, R. P., 1992, A reevaluation of the geochemical characteristics of solid bitumens from the Ouachita Mountains, Oklahoma: Oklahoma Geol. Survey Circ. 93, p. 337-342.Google Scholar
  62. Sclater, J. G., and Christie, P. A. F., 1980, Continental stretching: an explanation of the post mid-Cretaceous subsidence of the central North Sea Basin: Jour. Geophysical Res., v. 85,no. B7, p. 3711-3739.Google Scholar
  63. Schwarzbach, M., 1961, The climatic history of Europe and North America, in Nairn, A. E. M., ed., Descriptive Paleoclimatology: Interscience Publ., New York, p. 255-291.Google Scholar
  64. Schmoker, J. W., and Halley, R. B., 1982, Carbonate porosity versus depth: a predictable relation for southern Florida: Am. Assoc. Petroleum Geologists Bull., v. 66,no. 12, p. 2561-2570.Google Scholar
  65. Sharp, J. M., 1978, Energy and momentum transport model of the Ouachita Basin and its possible impact on formation of economic mineral deposits: Economic Geology, v. 73,no. 6, p. 1057-1068.Google Scholar
  66. Sutherland, P. K., 1989, Arkoma Basin: stratigraphy and tectonic framework, in Johnson, K. C., Amsden, T. W., Denison, R. E., Dutton, S. P., Goldstein, A. G., Rascoe, B. Jr., Sutherland, P. K., and Thompson, D. M., eds., Geology of the Southern Midcontinent: Oklahoma Geol. Survey Spec. Publ. 89-2, p. 25-34.Google Scholar
  67. Sverjensky, D. A., and Garven, G., 1992, Geochemistry; tracing great fluid migrations: Nature, v. 356,no. 6369, p. 481-482.Google Scholar
  68. Sweeney, J. J., and Burnham, A. K., 1991, Evaluation of a simple model of vitrinite reflectance based on chemical kinetics: Am. Assoc. Petroleum Geologists Bull., v. 74,no. 10, p. 1559-1570.Google Scholar
  69. Sweeney, J. J., Burnham, A. K., and Braun, R. L., 1987, A model of hydrocarbon generation from type I kerogen: application to Uinta Basin, Utah: Am. Assoc. Petroleum Geologists Bull., v.71,no.8, p. 967-985.Google Scholar
  70. Takach, N. E., Barker, C., and Kemp, M. K., 1987, Stability of natural gas in the deep subsurface: thermodynamic calculation of equilibrium compositions. Am. Assoc. Petroleum Geologists Bull., v. 71,no.3, p. 322-333.Google Scholar
  71. Tissot, B. P., and Espitalie, J., 1975, L'evolution thermique de la matiere organique des sediments: applications d'une simulation mathematique: Revue de l'Institute Francais du Petrole, v. 30,no. 5, p. 743-777.Google Scholar
  72. Tissot, B. P., and Welte, D. H., 1978, Petroleum formation and occurrence: Springer-Verlag, New York, 538 p.Google Scholar
  73. Tissot, B. P., Pelet, R., and Ungerer, Ph., 1987, Thermal history of sedimentary basins, maturation indices, and kinetics of oil and gas generation: Am. Assoc. Petroleum Geologists Bull., v.71,no.12, p. 1445-1466.Google Scholar
  74. Trask, P. D., and Patnode, H. W., 1942, Source beds of petroleum: Am. Assoc. Petroleum Geologists Spec. Publ., 350 p.Google Scholar
  75. Underwood, M. B., Fulton, D. A., and McDonald, K. W., 1988, Thrust control on thermal maturity of the frontal Ouachita Mountains, central Arkansas, USA: Jour. Petroleum Geology, v. 11,no. 3, p. 325-340.Google Scholar
  76. Ungerer, P., 1984, Models of petroleum formation: how to take into account geology and chemical kinetics, in Durand, B., ed., Thermal Phenomena in Sedimentary Basins: Technip, Paris, p. 235-246.Google Scholar
  77. Ungerer, P., Espitalie, J., Marquis, F., and Durand, B., 1986, Use of kinetic models of organic matter evolution for the reconstruction of paleo-temperatures: application to the case of the Gironville well (France), in Burrus, J., ed., Thermal Modeling in Sedimentary Basins: Technip, Paris, p. 531-546.Google Scholar
  78. Walton, A. W., Wojcik, K. M., Goldstein, R. H., and Barker C. E., 1995, Diagenesis of Upper Carboniferous rocks in the Ouachita foreland shelf in the mid-continent USA: an overview of wide-spread effects of a Varsican-equivalent orogeny: Geol. Rundsch, v. 84,no. 3, p. 535-551.Google Scholar
  79. Waples, D. W., 1980, Time and temperature in petroleum formation application of Lopatin's method to petroleum exploration: Am. Assoc. Petroleum Geologists Bull., v. 64,no. 6, p. 916-926.Google Scholar
  80. Wavrek, D. A., 1992, Characterization of oil types in the Ardmore and Marietta basins, southern Oklahoma aulacogen: Oklahoma Geol. Survey Circ. 93, p. 185-195.Google Scholar
  81. Weber, J. L., 1992, Organic matter content of outcrop samples from the Ouachita Mountains, Oklahoma: Oklahoma Geol. Survey Circ. 93, p. 347-352.Google Scholar
  82. Wojcik, K. M., McKibben, M. E., Goldstein, R. H., and Walton, A. W., 1992, Diagenesis, thermal history, and fluid migration, Middle and Upper Pennsylvanian rocks, southeastern Kansas: Oklahoma Geol. Survey Circ. 93, p. 144-159.Google Scholar
  83. Ziegler, P.A., 1989, Evolution of Laurussia: a study in Late Paleozoic plate tectonics: Kluwer Academic Publ., Dordrecht, The Netherlands, 102 p.Google Scholar
  84. Zemmels, I., and Walters, C.C., 1987, Variation of oil composition in vicinity of Arbuckle Mountains, Oklahoma (abst.): Am. Assoc. Petroleum Geologists Bull., v. 71,no. 8, p. 998-999.Google Scholar

Copyright information

© International Association for Mathematical Geology 1999

Authors and Affiliations

  1. 1.Kansas Geological SurveyLawrence
  2. 2.St. George

Personalised recommendations