Neurochemical Research

, Volume 28, Issue 1, pp 143–152 | Cite as

Protection of Mature Oligodendrocytes by Inhibitors of Caspases and Calpains

  • Joyce A. Benjamins
  • Liljana Nedelkoska
  • Edwin B. George
Article

Abstract

Mature mouse oligodendrocytes (OLs) are susceptible to death in demyelinating diseases such as multiple sclerosis and in brain injury following neurotrauma, ischemia, or stroke. To understand mechanisms leading to death of mature OLs and develop strategies for protection, we utilized cultures of mature mouse OLs to investigate the role of caspases and calpains in OL cell death mediated by different mechanisms. The agents used were (i) staurosporine, which induces apoptotic death via inhibition of protein kinases; (ii) kainate, which activates non-NMDA glutamate receptors; (iii) thapsigargin, which releases intracellular calcium stores; and (iv) SNAP, which releases active NO species and causes necrotic cell death. Inhibitors blocking primary effector caspases (including caspase 3), the FAS (death receptor)-mediated initiator caspases (including caspase 8), and stress-induced caspases (including caspase 9), were tested for their protective effects. Inhibition of caspases 3, 8, and 9 each robustly protected OLs following insult with staurosporine, thapsigargin, or kainate when added at optimal times. The time of addition of the inhibitors for maximal protection varied with the agent, from 1 h of preincubation before addition of staurosporine to 6 h after addition of kainate. Much less protection was seen for the NO generator SNAP under any condition. The role of calcium in OL death in each model was investigated by chelating extracellular Ca++ with EGTA, and by inhibiting the Ca++-activated calpain proteases. Calcium chelation did not protect against staurosporine, but decreased OL death initiated by kainate, thapsigargin, or NO. The calpain inhibitors PD150606 and calpain inhibitor I protected from cell death initiated by staurosporine, kainate, and thapsigargin, but not from cell death initiated by the NO donor SNAP.

Apoptosis calpains caspases kainate oligodendroglia staurosporine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Kruman, I., Guo, Q., and Mattson, M. P. 1998. Calcium and reactive oxygen species mediate staurosporine-induced mitochondrial dysfunction and apoptosis in pc12 cells. J. Neurosci. Res. 51:293–308.Google Scholar
  2. 2.
    Benjamins, J. A. and Nedelkoska, L. 1996. Release of intracellular calcium stores leads to retraction of membrane sheets and cell death in mature mouse oligodendrocytes. Neurochem. Res. 21:471–479.Google Scholar
  3. 3.
    Fern, R. and Moller, T. 2000. Rapid ischemic cell death in immature oligodendrocytes: A fatal glutamate release feedback loop. J. Neurosci. 20:34–42.Google Scholar
  4. 4.
    Tekkok, S. B. and Goldberg, M. P. 2001. AMPA/kainate receptor activation mediates hypoxic oligodendrocyte death and axonal injury in cerebral white matter. J. Neurosci. 21:4237–4248.Google Scholar
  5. 5.
    Yoshioka, A., Bacskai, B., and Pleasure, D. 1996. Pathophysiology of oligodendroglial excitotoxicity. J. Neurosci. Res. 46: 427–437.Google Scholar
  6. 6.
    Yoshioka, A., Shimizu, Y., Hirose, G., Kitasato, H., and Pleasure, D. 1998. Cyclic amp-elevating agents prevent oligodendroglial excitotoxicity. J. Neurochem. 70:2416–2423.Google Scholar
  7. 7.
    Itoh, T., Reddy, U. R., Stern, J. L., Chen, M., Itoh, A., and Pleasure, D. 2000. Diminished calcium homeostasis and increased susceptibility to excitotoxicity of JS 3/16 progenitor cells after differentiation to oligodendroglia. Glia. 31:165–180.Google Scholar
  8. 8.
    Kavanaugh, B., Beesley, J., Itoh, T., Itoh, A., Grinspan, J., and Pleasure, D. 2000. Neurotrophin-3 (nt-3) diminishes susceptibility of the oligodendroglial lineage to AMPA glutamate receptor-mediated excitotoxicity. J. Neurosci. Res. 60:725–732.Google Scholar
  9. 9.
    Boullerne, A. I., Nedelkoska, L., and Benjamins, J. A. 2001. Role of calcium in nitric oxide-induced cytotoxicity: EGTA protects mouse oligodendrocytes. J. Neurosci. Res. 63:124–135.Google Scholar
  10. 10.
    Mitrovic, B., Ignarro, L. J., Vinters, H. V., Akers, M. A., Schmid, I., Uittenbogaart, C., and Merrill, J. E. 1995. Nitric oxide induces necrotic but not apoptotic cell death in oligodendrocytes. Neuroscience 65:531–539.Google Scholar
  11. 11.
    Green, D. R. 1998. Apoptotic pathways: The roads to ruin. Cell 94:695–698.Google Scholar
  12. 12.
    Dyer, C. A. and Benjamins, J. A. 1990. Glycolipids and transmembrane signaling: Antibodies to galactocerebroside cause an influx of calcium in oligodendrocytes. J. Cell Biol. 111:625–633.Google Scholar
  13. 13.
    McCarthy, K. D. and de Vellis, J. 1980. Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J. Cell Biol. 85:890–902.Google Scholar
  14. 14.
    Bottenstein, J. E. 1986. Growth requirements in vitro of oligodendrocyte cell lines and neonatal rat brain oligodendrocytes. Proc. Natl. Acad Sci. USA 83:1955–1959.Google Scholar
  15. 15.
    Benjamins, J. A. and Nedelkoska, L. 1994. Maintenance of membrane sheets by cultured oligodendrocytes requires continuous microtubule turnover and golgi transport. Neurochem. Res. 19:631–639.Google Scholar
  16. 16.
    Paschen, W. and Frandsen, A. 2001. Endoplasmic reticulum dysfunction: A common denominator for cell injury in acute and degenerative diseases of the brain? J. Neurochem. 79:719-725.Google Scholar
  17. 17.
    Single, B., Leist, M., and Nicotera, P. 2001. Differential effects of bcl-2 on cell death triggered under atp-depleting conditions. Exp. Cell Res. 262:8–16.Google Scholar
  18. 18.
    Studzinski, D. M. and Benjamins, J. A. 2001. Cyclic amp differentiation of the oligodendroglial cell line N20.1 switches staurosporine-induced cell death from necrosis to apoptosis. J. Neurosci. Res. 66:691–697.Google Scholar
  19. 19.
    Kruman, I. I. and Mattson, M. P. 1999. Pivotal role of mitochondrial calcium uptake in neural cell apoptosis and necrosis. J. Neurochem. 72:529–540.Google Scholar
  20. 20.
    Nakagawa, T. and Yuan, J. 2000. Cross-talk between two cysteine protease families: Activation of caspase-12 by calpain in apoptosis. J. Cell Biol. 150:887–894.Google Scholar
  21. 21.
    Nakagawa, T., Zhu, H., Morishima, N., Li, E., Xu, J., Yankner, B. A., and Yuan, J. 2000. Caspase-12 mediates endoplasmicreticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 403:98–103.Google Scholar
  22. 22.
    Pike, B. R., Zhao, X., Newcomb, J. K., Wang, K. K., Posmantur, R. M., and Hayes, R. L. 1998. Temporal relationships between de novo protein synthesis, calpain and caspase 3-like protease activation, and DNA fragmentation during apoptosis in septo-hippocampal cultures. J. Neurosci. Res. 52:505–520.Google Scholar
  23. 23.
    Volpe, J. J. 2001. Neurobiology of periventricular leukomalacia in the premature infant. Pediatr. Res. 50:553–562.Google Scholar
  24. 24.
    Oka, A., Belliveau, M. J., Rosenberg, P. A., and Volpe, J. J. 1993. Vulnerability of oligodendroglia to glutamate: Pharmacology, mechanisms, and prevention. J. Neurosci. 13:1441–1453.Google Scholar
  25. 25.
    Matute, C., Alberdi, E., Domercq, M., Perez-Cerda, F., Perez-Samartin, A., and Sanchez-Gomez, M. V. 2001. The link between excitotoxic oligodendroglial death and demyelinating diseases. Trends Neurosci. 24:224–230.Google Scholar
  26. 26.
    Matute, C., Domercq, M., Fogarty, D. J., Pascual de Zulueta, M., and Sanchez-Gomez, M. V. 1999. On how altered glutamate homeostasis may contribute to demyelinating diseases of the CNS. Adv. Exp. Med. Biol. 468:97–107.Google Scholar
  27. 27.
    Werner, P., Pitt, D., and Raine, C. S. 2000. Glutamate excitotoxicity: A mechanism for axonal damage and oligodendrocyte death in multiple sclerosis? J. Neural. Transm. Suppl. 60:375–385.Google Scholar
  28. 28.
    Sanchez-Gomez, M. V. and Matute, C. 1999. Ampa and kainate receptors each mediate excitotoxicity in oligodendroglial cultures. Neurobiol. Dis. 6:475–485.Google Scholar
  29. 29.
    Matute, C., Sanchez-Gomez, M. V., Martinez-Millan, L., and Miledi, R. 1997. Glutamate receptor-mediated toxicity in optic nerve oligodendrocytes. Proc. Natl. Acad. Sci. U.S.A. 94:8830–8835.Google Scholar
  30. 30.
    Alberdi, E., Sanchez-Gomez, M. V., Marino, A., and Matute, C. 2002. Ca(2+) influx through ampa or kainate receptors alone is sufficient to initiate excitotoxicity in cultured oligodendrocytes. Neurobiol. Dis. 9:234–243.Google Scholar
  31. 31.
    Yoshioka, A., Yamaya, Y., Saiki, S., Kanemoto, M., Hirose, G., Beesley, J., and Pleasure, D. 2000. Non–N-methyl-D-aspartate glutamate receptors mediate oxygen: Glucose deprivation-induced oligodendroglial injury. Brain Res. 854:207-215.Google Scholar
  32. 32.
    Yoshioka, A., Yamaya, Y., Saiki, S., Kanemoto, M., Hirose, G., and Pleasure, D. 2000. Cyclic gmp/cyclic gmp-dependent protein kinase system prevents excitotoxicity in an immortalized oligodendroglial cell line. J. Neurochem. 74:633–640.Google Scholar
  33. 33.
    Follett, P. L., Rosenberg, P. A., Volpe, J. J., and Jensen, F. E. 2000. Nbqx attenuates excitotoxic injury in developing white matter. J. Neurosci. 20:9235–9241.Google Scholar
  34. 34.
    Jamin, N., Junier, M. P., Grannec, G., and Cadusseau, J. 2001. Two temporal stages of oligodendroglial response to excitotoxic lesion in the gray matter of the adult rat brain. Exp. Neurol. 172:17–28.Google Scholar
  35. 35.
    Liu, W., Liu, R., Chun, J. T., Bi, R., Hoe, W., Schreiber, S. S., and Baudry, M. 2001. Kainate excitotoxicity in organotypic hippocampal slice cultures: Evidence for multiple apoptotic pathways. Brain Res. 916:239–248.Google Scholar
  36. 36.
    Thastrup, O., Cullen, P. J., Drobak, B. K., Hanley, M. R., and Dawson, A. P. 1990. Thapsigargin, a tumor promoter, discharges intracellular Ca2+ stores by specific inhibition of the endoplasmic reticulum Ca2+-ATPase. Proc. Natl. Acad. Sci. U.S.A. 87:2466–2470.Google Scholar
  37. 37.
    Bitko, V. and Barik, S. 2001. An endoplasmic reticulum-specific stress-activated caspase (caspase-12) is implicated in the apoptosis of a549 epithelial cells by respiratory syncytial virus. J. Cell Biochem. 80:441–454.Google Scholar
  38. 38.
    Rao, R. V., Hermel, E., Castro-Obregon, S., del Rio, G., Ellerby, L. M., Ellerby, H. M., and Bredesen, D. E. 2001. Coupling endoplasmic reticulum stress to the cell death program: Mechanism of caspase activation. J. Biol. Chem. 276:33869–33874.Google Scholar
  39. 39.
    McColl, K. S., He, H., Zhong, H., Whitacre, C. M., Berger, N. A., and Distelhorst, C. W. 1998. Apoptosis induction by the glucocorticoid hormone dexamethasone and the calcium-atpase inhibitor thapsigargin involves bc1-2 regulated caspase activation. Mol. Cell Endocrinol. 139:229–238.Google Scholar
  40. 40.
    Bredesen, D. E. 2000. Apoptosis: Overview and signal transduction pathways. J. Neurotrauma. 17:801–810.Google Scholar
  41. 41.
    Zimmermann, K. C., Bonzon, C., and Green, D. R. 2001. The machinery of programmed cell death. Pharmacol. Ther. 92: 57–70.Google Scholar
  42. 42.
    Feng, G. and Kaplowitz, N. 2002. Mechanism of staurosporine-induced apoptosis in murine hepatocytes. Am. J. Physiol. Gastrointest. Liver Physiol. 282:G825–G834.Google Scholar
  43. 43.
    Stepczynska, A., Lauber, K., Engels, I. H., Janssen, O., Kabelitz, D., Wesselborg, S., and Schulze-Osthoff, K. 2001. Staurosporine and conventional anticancer drugs induce overlapping, yet distinct pathways of apoptosis and caspase activation. Oncogene 20:1193–1202.Google Scholar
  44. 44.
    Lopez, E. and Ferrer, I. 2000. Staurosporine-and h-7-induced cell death in sh-sy5y neuroblastoma cells is associated with caspase-2 and caspase-3 activation, but not with activation of the fas/fas-I-caspase-8 signaling pathway. Brain Res. Mol. Brain Res. 85:61–67.Google Scholar
  45. 45.
    Gu, C., Casaccia-Bonnefil, P., Srinivasan, A., and Chao, M. V. 1999. Oligodendrocyte apoptosis mediated by caspase activation. J. Neurosci. 19:3043–3049.Google Scholar
  46. 46.
    Tang, D., Lahti, J. M., and Kidd, V. J. 2000. Caspase-8 activation and bid cleavage contribute to mcf7 cellular execution in a caspase-3-dependent manner during staurosporine-mediated apoptosis. J. Biol. Chem. 275:9303–9307.Google Scholar
  47. 47.
    Fujita, E., Egashira, J., Urase, K., Kuida, K., and Momoi, T. 2001. Caspase-9 processing by caspase-3 via a feedback amplification loop in vivo. Cell Death Differ. 8:335–344.Google Scholar
  48. 48.
    Viswanath, V., Wu, Y., Boonplueang, R., Chen, S., Stevenson, F. F., Yantiri, F., Yang, L., Beal, M. F., and Andersen, J. K. 2001. Caspase-9 activation results in downstream caspase-8 activation and bid cleavage in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinson's disease. J. Neurosci. 21:9519–9528.Google Scholar
  49. 49.
    Moore, J. D., Rothwell, N. J., and Gibson, R. M. 2002. Involvement of caspases and calpains in cerebrocortical neuronal cell death is stimulus-dependent. Br. J. Pharmacol. 135:1069–1077.Google Scholar
  50. 50.
    Oppenheim, R. W., Flavell, R. A., Vinsant, S., Prevette, D., Kuan, C. Y., and Rakic, P. 2001. Programmed cell death of developing mammalian neurons after genetic deletion of caspases. J. Neurosci. 21:4752–4760.Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • Joyce A. Benjamins
    • 1
  • Liljana Nedelkoska
    • 1
  • Edwin B. George
    • 1
  1. 1.Department of NeurologyWayne State University School of MedicineDetroit

Personalised recommendations