Advertisement

IMPACTing SHOP: Putting an AI Planner Into a Multi-Agent Environment

  • Jürgen Dix
  • Héctor Muñoz-Avila
  • Dana S. Nau
  • Lingling Zhang
Article

Abstract

In this paper we describe a formalism for integrating the SHOP HTN planning system with the IMPACT multi-agent environment. We define the A-SHOP algorithm, an agentized adaptation of the SHOP planning algorithm that takes advantage of IMPACT's capabilities for interacting with external agents, performing mixed symbolic/numeric computations, and making queries to distributed, heterogeneous information sources (such as arbitrary legacy and/or specialized data structures or external databases). We show that A-SHOP is both sound and complete if certain conditions are met.

multi-agent systems HTN planning heterogenous/distributed data 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. Adali, K.S. Candan, S.-S. Chen, K. Erol and V.S. Subrahmanian, Advanced video information systems: Data structures and query processing, Multimedia Systems 4(4) (1996) 172–186.Google Scholar
  2. [2]
    S. Adali et al., Web hermes user manual, http://www.cs.umd.edu/projects/hermes/UserManual/index.html (1997).Google Scholar
  3. [3]
    F. Bacchus and F. Kabanza, Using temporal logics to express search control knowledge for planning, Artificial Intelligence 116(1-2) (2000) 123–191.Google Scholar
  4. [4]
    J. Benton and V.S. Subrahmanian, Using hybrid knowledge bases for missile siting problems, in: Proceedings of the Conference on Artificial Intelligence Applications (IEEE Computer Society, 1994) pp. 141–148.Google Scholar
  5. [5]
    A. Brink, S. Marcus and V.S. Subrahmanian, Heterogeneous multimedia reasoning, IEEE Computer 28(9) (1995) 33–39.Google Scholar
  6. [6]
    S. Chien, R. Hill, X. Wang and T. Estlin, Why real-world planning is difficult: A tale of two applications, in: Proceedings of the 3rd Europ. Workshop on Planning (EWSP-95) (1995).Google Scholar
  7. [7]
    K. Currie and A. Tate, O-plan: the open planning architecture, Artificial Intelligence 52(1) (1991).Google Scholar
  8. [8]
    R. Davis and R. Smith, Negotiation as a metaphor for distributed problem solving, Artificial Intelligence 20(1) (1983).Google Scholar
  9. [9]
    M.E. desJardins, E.H. Durfee, C.L. Ortiz Jr. and M.J. Wolverton, A survey of research in distributed, continual planning, AI Magazine 20(4) (1999).Google Scholar
  10. [10]
    J. Dix, S. Kraus and V.S. Subrahmanian, Temporal agent programs, Artificial Intelligence 127(1) (2001) 87–135.Google Scholar
  11. [11]
    J. Dix, H. Munoz-Avila and D.N. Lingling Zhang, Planning in a multi-agent environment: theory and practice, in: Proceedings of the First International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS' 02) (ACM Press, 2002).Google Scholar
  12. [12]
    J. Dix, M. Nanni and V.S. Subrahmanian, Probabilistic agent programs, ACM Transactions of Computational Logic 1(2) (2000) 207–245.Google Scholar
  13. [13]
    J. Dix, F. Öczan and V.S. Subrahmanian, Improving performance of heavily loaded agents, Technical Report CS-TR-4202, Department of Computer Science, University of Maryland, College Park, MD (November 2000).Google Scholar
  14. [14]
    J. Dix, V.S. Subrahmanian and G. Pick, Meta agent programs, Journal of Logic Programming 46(1-2) (2000) 1–60.Google Scholar
  15. [15]
    T. Eiter, V.S. Subrahmanian and G. Pick, Heterogeneous active agents, I: Semantics, Artificial Intelligence 108(1-2) (1999) 179–255.Google Scholar
  16. [16]
    T. Eiter and V.S. Subrahmanian, Heterogeneous active agents, II: Algorithms and complexity, Artificial Intelligence 108(1-2) (1999) 257–307.Google Scholar
  17. [17]
    T. Eiter, V.S. Subrahmanian and T.J. Rogers, Heterogeneous active agents, III: Polynomially implementable agents, Artificial Intelligence 117(1) (2000) 107–167.Google Scholar
  18. [18]
    O. Etzioni, D. Weld, D. Draper, N. Lesh and M. Williamson, An approach to planning with incomplete information, in: Proceedings of KR-92 (1992).Google Scholar
  19. [19]
    M. Friedman and D. Weld, Efficiently executing information-gathering plans, in: Proceedings of IJCAI-97 (1997).Google Scholar
  20. [20]
    K. Golden, O. Etzioni and D. Weld, Omnipotence without omniscience: efficient sensor management for planning, in: Proceedings of AAAI-94 (1994).Google Scholar
  21. [21]
    K.V. Hindriks, F.S. De Boer, W. Van der Hoek and J.-J. Ch. Meyer, Agent programming in 3APL, Autonomous Agents and Multi-Agent Systems 2(4) (1999) 357–401.Google Scholar
  22. [22]
    H. Kautz and J.P. Walser, State-space planning by integer optimization, in: Proceedings of the 17th National Conference of the American Association for Artificial Intelligence (1999) pp. 526–533.Google Scholar
  23. [23]
    C.A. Knoblock, Building a planner for information gathering: a report from the trenches, in: Proceedings of AIPS-96 (1996).Google Scholar
  24. [24]
    J. Köhler, Planning under resource constraints, in: Proceedings of the 13th European Conference on Artificial Intelligence (1998) pp. 489–493.Google Scholar
  25. [25]
    K.S. Lambert, Noncombatant evacuation operations: Plan now or pay later, Technical report, Naval War College, Newport, RI (1992).Google Scholar
  26. [26]
    D.S. Nau, Y. Cao, A. Lotem and H. Muñoz-Avila, Shop: Simple hierarchical ordered planner, in: Proceedings of IJCAI-99 (1999).Google Scholar
  27. [27]
    D.S. Nau, H. Muñoz-Avila, Y. Cao, A. Lotem and S. Mitchell, Total-order planning with partially ordered subtasks, in: Proceedings of IJCAI-2001 (2001).Google Scholar
  28. [28]
    D.S. Nau, S.J.J. Smith and K. Erol, Control strategies in HTN planning: Theory versus practice, in: AAAI-98/IAAI-98 Proceedings (1998) pp. 1127–1133.Google Scholar
  29. [29]
    M. Paolucci, D. Kalp, A. Pannu, O. Shehory and K. Sycara, A planning component for retsina agents, in: Intelligent Agents VI (M. Wooldridge and Y. Lesperance, 2000).Google Scholar
  30. [30]
    M. Paolucci, O. Shehory and K. Sycara, Interleaving planning and execution in a multiagent teamplanning environment, Technical Report CMU-RI-TR-00-01 (2000).Google Scholar
  31. [31]
    A. Rao, BDI agents speak out in a logical computable language, in: Agents Breaking Away: Proceedings of the Seventh European Workshop on Modelling Autonomous Agents in a Multi-Agent World, eds. W. Van de Velde and J.W. Perram, Lecture Notes in Artificial Intelligence, Vol. 1038 (Springer, Berlin, 1996) pp. 42–55.Google Scholar
  32. [32]
    E. Sacerdoti, A Structure for Plans and Behavior (American Elsevier Publishing, 1977).Google Scholar
  33. [33]
    J. Schafer, T.J. Rogers and J.A. Marin, Networked visualization of heterogeneous US Army war reserves readiness data, in: Advances in Multimedia Information Systems, 4th International Workshop, MIS'98, eds. S. Jajodia, T. Ozsu and A. Dogac, Lecture Notes in Computer Science, Vol. 1508, Istanbul, Turkey, September 1998 (Springer, Berlin, 1998) pp. 136–147.Google Scholar
  34. [34]
    A.B. Siegel, Eastern Exit: The noncombatant evacuation operation (NEO) from Mogadishu, Somalia, in January 1991, Technical Report CRM 91-221, Center for Naval Analyses, Arlington, VA (1991).Google Scholar
  35. [35]
    B. Srivastava and S. Kambhampati, Scaling up planning by teasing out resource scheduling, Technical Report ASU CSE TR 99-005 (1999). To appear in ECP-99.Google Scholar
  36. [36]
    V.S. Subrahmanian, P. Bonatti, J. Dix, T. Eiter, S. Kraus, F. Özcan and R. Ross, Heterogenous Active Agents (MIT Press, Cambridge, MA, 2000).Google Scholar
  37. [37]
    A. Tate, Generating project networks, in: Proc. IJCAI-77 (1998) pp. 888–893.Google Scholar
  38. [38]
    S. Thomas, PLACA: An agent-oriented programming language, Ph.D. Thesis, Stanford University (1993).Google Scholar
  39. [39]
    S. Thomas, The placa agent programming language, in: Pre-Proc. of Workshop on Agent Theories, Architectures, and Languages (ATAL'94), Amsterdam, The Netherlands (1994) pp. 307–319.Google Scholar
  40. [40]
    D.E. Wilkins, Practical Planning - Extending the Classical AI Planning Paradigm (Morgan Kaufmann, San Mateo, CA, 1988).Google Scholar
  41. [41]
    S.A. Wolfman and D.S. Weld, The LPSAT engine and its application to resource planning, in: Proceedings of the 15th International Joint Conference on Artificial Intelligence (1999) pp. 310–317.Google Scholar
  42. [42]
    M. Wooldridge and N. Jennings, Intelligent agents: Theory and practice, Knowledge Engineering Reviews 10(2) (1995).Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Jürgen Dix
    • 1
  • Héctor Muñoz-Avila
    • 2
  • Dana S. Nau
    • 2
  • Lingling Zhang
    • 2
  1. 1.The University of ManchesterManchesterUK
  2. 2.University of MarylandCollege ParkUSA

Personalised recommendations