Advertisement

Plant Growth Regulation

, Volume 38, Issue 3, pp 219–224 | Cite as

Root colonization and growth promotion of winter wheat and pea by Cellulomonas spp. at different temperatures

  • Dilfusa Egamberdiyeva
  • Gisela Höflich
Article

Abstract

Plant-growth-promoting bacteria isolated from the rhizosphere andphyllosphere were analysed for their colonization and growth-promoting effectson winter wheat and pea at different temperatures. The investigations werecarried out in pot experiments using loamy sand in Germany. The colonization ofstrains Cellulomonas sp. 21/2 andCellulomonas sp. 43 in the rhizosphere of winter wheat andpea were much better at 16 °C than that at 26°C. The inoculation with effective bacterial strainssignificantly increased the root and shoot growth of winter wheat and pea at 16more than at 26 °C. Bacterial inoculation also resulted insignificantly higher amount of N, P, and K contents of plant components.

Colonization Nutrient uptake Plant-growth-promoting bacteria Temperature 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bashan Y. and Levanony H. 1988. Migration, colonization and adsorbtion of Azospirillum brasilense to wheat roots. Biol. Biochem. Clin. Biochem. 6: 69–83.Google Scholar
  2. Behrendt U., Müller T. and Seyfarth W. 1997. The influence of extensification in grassland management on the populations of microorganisms in the phyllosphere of grasses. Microbiol. Res. 152: 75–85.Google Scholar
  3. Holt G.J., Krieg N.R., Sneath P.H., Staley J.T. and Williams S.T. 1994. Bergey's Manual of Determinative Bacteriology. 9th edn. The Williams and Wilkins Co., Baltimore.Google Scholar
  4. Bowers J.H. and Parke J.L. 1993. Colonization of pea (Pisum sativum) taproots by Pseudomonas fluorecens: effect of soil temperature and bacterial mobility. Soil Biology and Biochemistry 25: 1693–1701.Google Scholar
  5. De Weger L.A., Van Der Bij A.J., Dekkers L.C., Simons M., Wijffelman C.A. and Lugtenberg B.J.J. 1995. Colonization of the rhizosphere of crop plants by plant beneficial pseudomonas. FEMS Microbiology Ecology 17: 221–228.Google Scholar
  6. Höflich G., Wiehe W. and Kühn G. 1994. Plant growth stimulation with symbiotic and associative rhizosphere microorganisms. Experientia 50: 897–905.Google Scholar
  7. Höflich G., Wiehe W. and Hecht-Buchholz C.H. 1995. Rhizosphere colonization of different growth promoting Pseudomonas and Rhizobium bacteria. Microbiol. Res. 150: 139–147.Google Scholar
  8. Höflich G., Tappe E., Kühn G. and Wiehe W. 1997. Einfluß assoziativer Rhizosphärenbakterien auf die Nährstoffaufnahme und den Ertrag von Mais. Arch. Acker-Pfl. Boden. 41: 323–333.Google Scholar
  9. Höflich G. and Kühn G. 1996. Förderung das Wachstums und der Nährstoffaufnahme bei kruziferen Öl-und ZwischenfrÜchten durch inokulierte Rhizosphärenmikroorganismen. Z. Pflanzenernähr. Bodenkd. 159: 575–578.Google Scholar
  10. Hirte W.F. 1961. Glyzerin-Pepton-Agar, ein vorteilhafter Nährboden für bodenbakteriologische Arbeiten. Zbl. Bakt. 114: 141–146.Google Scholar
  11. Juhnke M.E., Mathre D.E. and Sands D.C. 1987. Identification and characterisation of rhizosphere-competent bacteria of wheat. Appl. Environ. Microbiol. 53: 2793–2799.Google Scholar
  12. Kloepper J.W., Leong J., Teintze M. and Schroth M.N. 1980. Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature (London) 286: 885–886.Google Scholar
  13. Leong J. 1986. Siderophores: their biochemistry and possible role in the biocontrol of plant pathogens. Ann. Rev. Phytopathol. 24: 187–209.Google Scholar
  14. Rattray E.A.S., Tyrrel J.A., Prosser J.L., Glover L.A. and Killham K. 1993. Effect of soil bulk density and temperature on wheat rhizosphere colonization by lux-marked Pseudomonas fluorescens. Eur. J. Soil Biol. 29: 73–82.Google Scholar
  15. Riehm H. 1985. Arbeitsvorschrift zur Bestimmung der Phosphorsäure und des Kaliums nach der Laktatmethode. Zeitschrift für Pflanzen, Düngung und Bodenkunde. 40: 152–156.Google Scholar
  16. Ruppel S. 1998. Isolation diazotropher Bakterien aus der Rhizosphäre von Winterweizen und Charakterisierung ihrer Leistungsfähigkeit. Diss. Akademie der Landwirtschafts-wissenschaften der DDR, Müncheberg, DDR.Google Scholar
  17. Schachtschnabel P. and Heinemann C.G. 1974. Beziehungen zwischen den Kaliumgehalten in Böden und in jungen Haferpflanzen. Zeitschrift für Pflanzen, Düngung und Bodenkunde 137: 123–134.Google Scholar
  18. Sarwar M., Ashad A.D., Martens W.T. and Frankenberger J.R. 1992. Tryptophan dependent biosynthesis of auxins in soil. Plant and Soil 147: 207–215.Google Scholar
  19. Sharma V.K. and Nowak J. 1998. Enhancement of Verticillum wilt resistance in tomato transplants by in vitro co-culture of seedlings with a plant growth promoting rhizobacterium (Pseudomonas sp. Strain PsJN). Can. J. Microbiol. 44: 528– 536.Google Scholar
  20. Tauschke M. and Lentzsch P. 1997. Efficiency of the nodulating Rhizobium leguminosarum bv. viciae population under the in-fluence of slurry deposition and slope position. Microbiol. Res. 152: 157–165.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  1. 1.Institute of MicrobiologyUzbek Academy of SciencesTashkentUzbekistan (
  2. 2.Institute for Primary Production and Microbial Ecology, Centre for Agricultural Landscape and Land Use ResearchMünchebergGermany

Personalised recommendations