Advertisement

Euphytica

, Volume 129, Issue 1, pp 69–79 | Cite as

Fast and reliable strawberry cultivar identification using inter simple sequence repeat (ISSR) amplification

  • G. Arnau
  • J. Lallemand
  • M. Bourgoin
Article

Abstract

ISSR amplification was evaluated for its applicability to strawberry varietalidentification. Eighteen primers based on various di- tri- or tetra- SSR motifswith 3 or 0 5'-selective nucleotides for anchoring were screened against thestrawberry genome by agarose gel electrophoresis. PCR conditions wereoptimised to obtain high quality patterns. Five primers that gave informativepatterns were selected and used to characterise, by polyacrylamide gelelectrophoresis, 30 strawberry varieties of various geographic and geneticorigins. A total of 390 bands, 113 of which were polymorphic (30%),were generated using these five primers. Genetic similarity between varietieswas estimated using Jaccard's coefficient of similarity. The associationsbetween varieties revealed by UPGMA analysis were consistent withpedigree data. With only one primer, all the varieties were distinguishedincluding those with a common pedigree. Banding patterns were highlyreproducible for DNA samples extracted from different tissues (leaves,sepals, and rhizomes) of the same plant, or from different plants (clones)of the same variety. ISSR technique is therefore a potentially useful tool forthe identification of strawberry varieties because it is simple, fast,cost-effective, highly discriminant and highly reliable.

cultivar identification DNA fingerprinting Fragaria ananassa L. ISSR reproducibility strawberry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnau, G. & M. Bourgoin, 1998. Applicability of Amplified Fragment Length Polymorphism Markers for Strawberry Cultivar Identification. International Union for the protection of new cultivars of plants. Fifth Session, Beltsville (USA), 28-30 September. Biochem Mol Techn 5: 1-6.Google Scholar
  2. Blair, M.W., O. Panaud & S.R. McCouch, 1999. Inter-simple sequence repeat (ISSR) amplification for analysis of microsatellite motif frequency and fingerprinting in rice (Oryza sativa L.). Theor Appl Genet 98: 780-792.Google Scholar
  3. Charters, Y.M., A. Robertson, M.J. Wilkinson & G. Ramsay, 1996. PCR analysis of oilseed rape cultivars (Brassica napus L. ssp. oleifera) using 5'-anchored simple sequence repeat (SSR) primers. Theor Appl Genet 92: 442-447.Google Scholar
  4. Degani, C., L.J. Rowland, A. Levi, J.A. Hortynski & G.J. Galleta, 1998. DNA fingerprinting of strawberry (Fragaria ananassa) cultivars using randomly polymorphic DNA (RAPD) markers. Euphytica 102: 247-253.Google Scholar
  5. Godwin, I.D., E.A. Aitken & L.W. Smith, 1997. Application of inter simple sequence repeat (ISSR) markers to plant genetics. Electrophoresis 18: 1524-1528.Google Scholar
  6. Graham, J., R.J. McNicol & J.W. McNicol, 1996. A comparison of methods for the estimation of genetic diversity in strawberry cultivars. Theor Appl Genet 93: 402-406.Google Scholar
  7. Hamada, H., M.G. Petrino & T. Kakunaga, 1982. A novel repeat element with Z-DNA-forming potential is widely found in evolutionarily diverse eukaryotic genomes. Proc natl Acad Sci USA 79: 6465-6469.Google Scholar
  8. Hill, M., H. Witsenboer, M. Zabeau, P. Vos, R. Kesseli & R. Michelmore, 1996. PCR-based fingerprinting using AFLPs as tool for studying genetic relationships in Lactuca spp. Theor Appl Genet 93: 1202-1210.Google Scholar
  9. Jain, A., C. Apparanda & P.L. Bhalla, 1999. Evaluation of genetic diversity and genome fingerprinting of Pandorea (Bignoniaceae) by RAPD and inter-SSR PCR. Genome 42: 714-719.Google Scholar
  10. Kantety, R.V., X. Zeng, J. Bennetzen & B.E. Zehr, 1995. Assessment of genetic diversity in dent and popcorn (Zea mays L.) inbred lines using inter-simple sequence repeat (ISSR) amplification. Mol Breed 1: 365-373.Google Scholar
  11. Klein-Lankhorst, R.M., A. Vermunt, R. Weide, T. Liharska & P. Zabel, 1991. Isolation of molecular markers for tomato (L. esculentum) using random amplified polymorphic DNA (RAPD). Theor Appl Genet 83: 108-114.Google Scholar
  12. Landry, B.S., L. Rongqi & S. Khanizadeh, 1997. Classification of 75 strawberry cultivars and breeding lines using RAPD markers. Acta Hortic 439: 101-105.Google Scholar
  13. McGregor C.E., C.A. Lambert, M.M. Greyling, J.H. Louw & L. Warnich, 2000. A comparative assessment of DNA fingerprinting techniques (RAPD, ISSR, AFLP and SSR) in tetraploid potato (Solanum tuberosum L.) germplasm. Euphytica 113: 135-144.Google Scholar
  14. MacPherson, J.M., P.E. Eckstein, G.J. Scoles & A. Gajadhar, 1993. Variability of the random amplified polymorphic DNA assay among thermal cyclers, and effects of primer and DNA concentration. Mol cell Probes 7: 289-293.Google Scholar
  15. Nagaoka, T. & Y. Ogihara, 1997. Applicability of inter-simple sequence repeat polymorphisms in wheat for use as DNA markers in comparison to RFLP and RAPD markers. Theor Appl Genet 94: 597-602.Google Scholar
  16. Prevost, A. & M.J. Wilkinson, 1999. A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. Theor Appl Genet 98: 107-112.Google Scholar
  17. Rogers, S.O. & J. Bendich, 1988. Extraction of DNA from plant tissues. Plant Mol Biol Man A6: 1-10.Google Scholar
  18. Schierwater, B. & A. Ender, 1993. Different thermostable DNA polymerases may amplify different RAPD products. Nucl Acids Res 21: 4647-4648.Google Scholar
  19. Skroch, P.W & J. Nienhuis, 1995. Impact of scoring error and reproducibility of RAPD data on RAPD-based estimates of genetic distance. Theor Appl Genet 91: 1086-1091.Google Scholar
  20. Vasconcelos, M., E.G. Barros, M.A. Moreira & C. Vieira, 1996. Genetic diversity of the common bean Phaseolus vulgaris L. determined by DNA-based molecular markers. Brazil J Genet 19(3): 447-451.Google Scholar
  21. Vos, P., R. Hogers, M. Bleeker, M. Reijans, T. Van de Lee, H. Hornes, A. Frijters, J. Pot, J. Peleman, M. Kuiper & M. Zabeau, 1995. AFLP: a new technique for DNA fingerprinting. Nucl Acids Res 23: 4407-4414.Google Scholar
  22. Williams, J.G.K., A.R. Kubelik, K.J. Livak., J.A. Rafalski & S.V. Tingey, 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucl Acids Res 18: 6531-6535.Google Scholar
  23. Wolff, K., E. Zietkiewicz & H. Hofstra, 1995. Identification of chrysanthemum cultivars and stability of DNA fingerprint patterns. Theor Appl Genet 91: 439-447.Google Scholar
  24. Zietkiewicz, E., A. Rafalski & D. Labuda, 1994. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20: 176-183.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • G. Arnau
    • 1
  • J. Lallemand
    • 1
  • M. Bourgoin
    • 1
  1. 1.BioGEVES, Domaine du MagneraudSurgèresFrance

Personalised recommendations