Catalysis Letters

, Volume 84, Issue 3–4, pp 183–192 | Cite as

Ru-Mo/HZSM-5 Catalyzed Methane Aromatization in Membrane Reactors

  • F. Larachi
  • H. Oudghiri-Hassani
  • M.C. Iliuta
  • B.P.A. Grandjean
  • P.H. McBreen


Oxygen-free methane conversion into benzene was carried out in a catalytic membrane reactor over 0.5%Ru-3%Mo/HZSM-5 in the temperature range 873-973 K following three reaction protocols: (i) straight-run catalytic reactor without hydrogen permeation (OFF), (ii) cycled OFF/ON hydrogen permeation sequences, and (iii) cycled OFF/ON hydrogen permeation sequences intertwined with CH4/H2 regenerative steps. X-ray photoelectron spectroscopy analysis of fresh and spent catalysts identified, in all cases, three types of carbon species that formed during aromatization, including carbide formation. The presence of a permeating membrane did not give rise to different chemical states of carbon and molybdenum on the catalyst from those known to form in straight runs under no hydrogen permeation. The ON mode, i.e., during permeation, led to the accumulation of graphite-like and aromatic-aliphatic (coke) species on the catalyst. However, both types of carbon were reduced during the OFF step either by autogenous hydrogen or via an external source of hydrogen under CH4/H2 regenerative steps.

molybdenum carbide methane nonoxidative aromatization catalytic membrane surface analysis zeolite catalysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M.C. Iliuta, F. Larachi, B.P.A. Grandjean, I. Iliuta and A. Sayari, Ind. Eng. Chem. Res. 41 (2002) 2371.Google Scholar
  2. [2]
    M.C. Iliuta, B.P.A. Grandjean and F. Larachi, Ind. Eng. Chem. Res., submitted June 2002.Google Scholar
  3. [3]
    O. Rival, B.P.A. Grandjean, C. Guy, A. Sayari and F. Larachi, Ind. Eng. Chem. Res. 40 (2001) 2212.Google Scholar
  4. [4]
    N. Jemaa, B.P.A Grandjean and S. Kaliaguine, Can. J. Chem. Eng. 73 (1995) 405.Google Scholar
  5. [5]
    A. Li, W. Liang and R. Hughes, J. Membr. Sci. 49 (1998) 259.Google Scholar
  6. [6]
    V. Höllein, M. Thornton, P. Quicker and R. Dittmeyer, Catal. Today 33 (2001) 33.Google Scholar
  7. [7]
    J.L. Zeng, Z.T. Xiong, H.B. Zhang, G.D. Lin and K.R. Tsai, Catal. Lett. 53 (1998) 119.Google Scholar
  8. [8]
    B.M. Weckhuysen, M.P. Rosynek and J.H. Lunsford, Catal. Lett. 52 (1998) 31.Google Scholar
  9. [9]
    Y. Xu and L. Lin, Appl. Catalysis A: General 188 (1999) 53.Google Scholar
  10. [10]
    L. Chen, L. Lin, Z. Xu, T. Zhang and X. Li, Catal. Lett. 39 (1996) 169.Google Scholar
  11. [11]
    L. Wang, Y. Xu, S.T. Wong, W. Cui and X. Guo, Appl. Catal. A: General 152 (1997) 173.Google Scholar
  12. [12]
    S. Liu, Q. Dong, R. Ohnishi and M. Ichikawa, Chem. Commun. 1997, 1455.Google Scholar
  13. [13]
    Y. Shu, Y. Xu, S.T. Wong, L. Wang and X. Guo, J. Catal. 170 (1997) 11.Google Scholar
  14. [14]
    H. Jiang, L. Wang, W. Cui and Y. Xu, Catal. Lett. 57 (1999) 95.Google Scholar
  15. [15]
    S. Liu, Q. Dong, R. Ohnishi and M. Ichikawa, Chem. Commun. (1998), 1217.Google Scholar
  16. [16]
    P. Tan, Z. Xu, T. Zhang, L. Chen and L. Lin, React. Kinet. Catal. Lett. 61 (1997) 391.Google Scholar
  17. [17]
    F. Solymosi, A. Erdöhelyi and A. Szöke, Catal. Lett. 32 (1995) 43.Google Scholar
  18. [18]
    D. Wang, J.H. Lunsford and M.P. Rosynek, Topics Catal. 3 (1996) 289.Google Scholar
  19. [19]
    D. Wang, J.H. Lunsford and M.P. Rosynek, J. Catal. 169 (1997) 347.Google Scholar
  20. [20]
    F. Solymosi, J. Cserényi, A. Szöke, T. Bánsági and A. Oszkó, J. Catal. 165 (1997) 150.Google Scholar
  21. [21]
    S.B. Derouane-Abd Ahmed, J.R. Anderson, I. Schmidt, C. Bouchy, C.J.H. Jacobsen and E.G. Derouane, Catal. Today 63 (2000) 461.Google Scholar
  22. [22]
    C. Bouchy, I. Schmidt, J.R. Anderson, C.J.H. Jacobsen, E.G. Derouane and S.B. Derouane-Abd Ahmed, J. Molec. Catal. A: Chemical 163 (2000) 283.Google Scholar
  23. [23]
    F. Solymosi, A. Szöke and J. Cserényi, Catal. Lett. 39 (1996) 157.Google Scholar
  24. [24]
    W. Ding, S. Li, G.D. Meitzner and E. Iglesia, J. Phys. Chem. B 105 (2001) 506.Google Scholar
  25. [25]
    T. Zhou, A. Liu, Y. Mo and H. Zhang, J. Phys. Chem. A 104 (2000) 4505.Google Scholar
  26. [26]
    E. Zahidi, H. Oudghiri-Hassani and P.H. McBreen, Nature 409 (2001) 1023.Google Scholar
  27. [27]
    S.T. Oyama, Catal. Today 15 (1992) 1979.Google Scholar
  28. [28]
    J. Wang, M. Castonguay, P.H. McBreen, S. Ramanathan and S.T. Oyama, in: Monograph of the Chemistry of Transition Metal Nitrides and Carbides (Chapman & Hall, London, 1996) p. 426.Google Scholar
  29. [29]
    J. Wang, M. Castonguay, J. Deng and P.H. McBreen, Surf. Sci. 374 (1997) 197.Google Scholar
  30. [30]
    S.T. Wong, Y. Xu, L. Wang, S. Liu, G. Li, M. Xie and X. Guo, Catal. Lett. 38 (1996) 39.Google Scholar
  31. [31]
    C.D. Wagner, W.M. Riggs, L.E. Davis, J.F. Moulder and G.E. Muilenberg, Handbook of X-Ray Photoelectron Spectroscopy (Perkin-Elmer Corporation, Physical Electronics Division, Eden Prairie, MS, 1979).Google Scholar
  32. [32]
    H. Darmstadt, A. Chaala, C. Roy and S. Kaliaguine, Fuel 75 (1996) 125.Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • F. Larachi
    • 1
    • 2
  • H. Oudghiri-Hassani
    • 3
    • 2
  • M.C. Iliuta
    • 1
    • 2
  • B.P.A. Grandjean
    • 1
    • 2
  • P.H. McBreen
    • 3
    • 2
  1. 1.Department of Chemical EngineeringLaval UniversityQuébecCanada
  2. 2.Research Center for the Properties of Interfaces and Catalysis CERPICLaval UniversityQuébecCanada
  3. 3.Department of ChemistryLaval UniversityQuébecCanada

Personalised recommendations