, Volume 71, Issue 6, pp 698–706 | Cite as

Phenotypic Features of Ferroplasma acidiphilum Strains YT and Y-2

  • T. A. Pivovarova
  • T. F. Kondrat'eva
  • S. G. Batrakov
  • S. E. Esipov
  • V. I. Sheichenko
  • S. A. Bykova
  • A. M. Lysenko
  • G. I. Karavaiko


Earlier, we described a new family of mesophilic, strictly autotrophic Fe2+-oxidizing archaebacteria, Ferroplasmaceae, which belongs to the order Thermoplasmales and includes the genus Ferroplasma and the species F. acidiphilum (strain YT) [1]. The present work is concerned with a comparative study of phenotypic characteristics of the type strain YТ and a new strain, F. acidiphilum Y-2, isolated from dense pulps during oxidation of gold-containing arsenopyrite/pyrite concentrates from the Bakyrchikskoe (Kazakhstan) and Olimpiadinskoe (Krasnoyarsk krai) ore deposits, respectively. The G+C content of DNA from strains YT and Y-2 comprised 35.1 and 35.2 mol %, respectively; the level of DNA–DNA homology between the strains was 84%. Restriction profiles of chromosomal DNA from both strains exhibited a similarity coefficient of 0.87. Genotypic characteristics of these strains indicate their affiliation to the same species. The cells of both strains are polymorphic and lack cell walls. Strains of F. acidiphilum oxidized ferrous iron and pyrite as the sole source of energy and fixed carbon dioxide as the sole carbon source. The strains required yeast extract as a growth factor. Optimum pH for cell growth ranged from 1.7 to 1.8; the temperature optima for the growth of strains YT and Y-2 were 34–36 and 40–42°С, respectively. Comparative analysis of the total lipids revealed their close similarity in the strains; two glycophospholipids comprised 90% of the total lipids: lipid I, β-D-glucopyranosylcaldarchaetidylglycerol (about 55%), and lipid II, trihexosylcaldarchaetidylglycerol (26%), whose isopranyl chains contained no cyclopentane rings. The carbohydrate fraction of lipid I hydrolysate contained only D-glucose, whereas hydrolysate of lipid II contained both D-glucose and D-galactose in a molar ratio of 2 : 1. Thus, it was established that the intraspecies phylogenetic divergence within F. acidiphilum is manifested in the two strains by different temperature optima against a background of similarity in other phenotypic properties.

Archaea Ferroplasma acidophiles chemolithoautotrophs iron-oxidizing bacteria 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Golyshina, O.V., Pivovarova, T.A., Karavaiko, G.I., Kondrat'eva, T.F., Moore, E.R., Abraham, W.R., Lansdorf, H., Timmis, K., Yakimov, M.M., and Golyshin, P.N., Ferroplasma acidiphilum gen. nov., sp. nov, an Acidophilic, Autotrophic, Ferrous-Iron-Oxidizing Cell-Wall-Lacking, Mesophilic Member of the Ferroplasmaceae fam. nov., Comprising a Distinct Lineage of the Archaea, Int. J. Syst. Bacteriol., 2000, vol. 50, pp.-997–1006.Google Scholar
  2. 2.
    Darland, G., Brock, T.D., Samsonoff, W., and Conti, S.F., A Thermophilic Acidophilic Mycoplasma Isolated from a Coal Refuse Pile, Science, 1970, vol.170, pp. 1416–1418.Google Scholar
  3. 3.
    Segerer, A., Langworthy, T.A., and Stetter, K.O., Thermoplasma acidophilum and Thermoplasma volcanium sp. nov. from Solfatara Fields, Syst. Appl. Microbiol., 1988, vol. 10, pp. 161–171.Google Scholar
  4. 4.
    Segerer, A.H. and Stetter, K.O., The Genus Thermoplasma, The Procaryotes, 2nd ed., Balows, A. et al., Eds., New York: Springer, 1992, pp. 712–718.Google Scholar
  5. 5.
    Schleper, C., Pühlex, G., Klenk, H.P., and Zillig, W., Picrophilus oshimae and Picrophilus torridus fam. nov., sp. nov., Two Species of Hyperacidophilic, Thermophilic, Heterotrophic Aerobic Archaea, Int. J. Syst. Bacteriol., 1996, vol. 46, pp. 814–816.Google Scholar
  6. 6.
    Edwards, K.J., Bond, P.L., Thomas, M.G., and Ban-field, J.F., An Archaeal Iron-Oxidizing Extreme Acidophile Important in Acid Mine Drainage, Science, 2000, vol. 287, pp. 1796–1799.Google Scholar
  7. 7.
    Marmur, J., A Procedure for the Isolation DNA from Microorganisms, J. Mol. Biol., 1961, vol. 3, pp. 208–218.Google Scholar
  8. 8.
    Owen, R.J., Hill, L.R., and Lapage, S.P., Determination of DNA Base Composition from Melting Profiles in Dilute Buffers, Biopolymers, 1969, vol. 7, pp. 503–516.Google Scholar
  9. 9.
    De Ley, J., Cattoir, H., and Reynaerts, A., The Quantitative Measurement of DNA Hybridization from Renaturation Rate, Eur. J. Biochem., 1970, vol. 12, pp. 133–142.Google Scholar
  10. 10.
    Schwartz, D.C. and Kantor, C.R., Separation of Yeast Chromosome-Sized DNA by Pulsed Field Gradient Gel Electrophoresis, Cell (Cambridge, Mass.), 1984, vol. 37, no. 1, pp. 67–75.Google Scholar
  11. 11.
    Kondrat'eva, T.F., Pivovarova, T.A., and Karavaiko, G.I., Peculiarities in the Chromosomal DNA Structure in Acidianus brierleyi and Ferroplasma acidiphilum Grown under Varied Conditions, Mikrobiologiya, 1999, vol. 68, no. 4, pp. 508–513.Google Scholar
  12. 12.
    Batrakov, S.G. and Nikitin, D.I., Lipid Composition of the Phosphatidylcholine-Producing Bacterium Hyphomicrobium vulgare NP-160, Biochim. Biophys. Acta, 1996, vol. 1302, no. 1, pp. 129–137.Google Scholar
  13. 13.
    Swain, M., Brisson, J.R., Sprott, G.D., Cooper, E.P., and Patel, G.B., Identification of β-L-Gulose as the Sugar Moiety of the Main Polar Lipid of Thermoplasma acidophilum, Biochim. Biophys. Acta, 1997, vol. 1345, no. 1, pp. 56–64.Google Scholar
  14. 14.
    Zvyagintseva, I.S., Bykova, S.A., and Gal'chenko, V.F., Taxonomic Structure of Haloarchaea Based on the Results of Gel Electrophoresis of Cell Proteins, Mikrobiologiya, 1999, vol. 68, pp. 283–288.Google Scholar
  15. 15.
    Gal'chenko, V.F. and Nesterov, A.I., Numeric Analysis of Protein Electrophoregrams of Obligately Methanotrophic Bacteria, Mikrobiologiya, 1981, vol. 50, pp.-973–979.Google Scholar
  16. 16.
    Dice, L.R., Measurement of the Amount of Ecologic Association Between Species, Ecology, 1945, vol. 26, pp. 297–302.Google Scholar
  17. 17.
    De Rosa, M. and Gambacorta, A., The Lipids of Archaebacteria, Progr. Lipid Res., 1988, vol. 27, pp. 153–175.Google Scholar
  18. 18.
    De Rosa, M., Gambacorta, A., and Gliozzi, A., Structure, Biosynthesis, and Physicochemical Properties of Archaebacterial Lipids, Microbiol. Rev., 1986, vol. 50, pp. 70–80.Google Scholar
  19. 19.
    Bock, K. and Thoegersen, H., Nuclear Magnetic Resonance Spectroscopy in the Studies of Mono-and Oligosaccharides, Ann. Rep. NMR Spectrosc., 1982, vol. 13, pp. 1–57.Google Scholar
  20. 20.
    Uda, I., Sugai, A., Shimizu, A., and Itoh, T., Glucosylcaldarchaetidylglycerol, a Minor Phosphoglycolipid from Thermoplasma acidophilum, Biochim. Biophys. Acta, 2000, vol. 1484, pp. 83–86.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2002

Authors and Affiliations

  • T. A. Pivovarova
    • 1
  • T. F. Kondrat'eva
    • 1
  • S. G. Batrakov
    • 2
  • S. E. Esipov
    • 3
  • V. I. Sheichenko
    • 4
  • S. A. Bykova
    • 1
  • A. M. Lysenko
    • 1
  • G. I. Karavaiko
    • 1
  1. 1.Institute of MicrobiologyRussian Academy of SciencesMoscowRussia
  2. 2.Gidrobios Russian Scientific Production CenterMinistry of HealthMoscowRussia
  3. 3.Shemyakin–Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia
  4. 4.All-Russia Research Institute of Medicinal and Aromatic PlantsRussian Academy of Agricultural SciencesMoscowRussia

Personalised recommendations