Behavior Genetics

, Volume 28, Issue 2, pp 125–136 | Cite as

Genotypic Differences Between C57BL/6 and A Inbred Mice in Anxiolytic and Sedative Actions of Diazepam

  • Kennon M. Garrett
  • Iwona Niekrasz
  • Dewan Haque
  • K. Michael Parker
  • Thomas W. Seale
Article

Abstract

The role of genotype in susceptibility to the behavioral actions of benzodiazepines is not well characterized. To develop a model for such studies, we have characterized the anxiolytic and sedative activities of diazepam in C57BL/6J and A/J inbred mice. C57BL/6J mice were more responsive than A/J mice to diazepam-induced anxiolytic-like activity in the mirrored chamber aversion assay and the elevated plus-maze assay. Basal activity of the two strains did not differ in either assay. In contrast, the two strains were equally responsive to the anxiolytic effects of the 5-HT1Areceptor partial agonist, buspirone. C57BL/6J mice were also more susceptible to the sedative effects of diazepam than were A/J mice. Flumazenil blocked the effects of diazepam in these behavioral assays. Measurement of diazepam and nordiazepam in blood and brain suggested that the response differences are of a pharmacodynamic rather than a pharmacokinetic nature. Taken together, these findings indicate that C57BL/6J and A/J mice provide a valuable tool for behavioral genetic studies of the mechanisms underlying the pharmacological actions of benzodiazepines.

Benzodiazepines GABAAreceptor inbred mice pharmacogenetics anxiety sedation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Baldessarini, R. J. (1995). Drugs and the treatment of psychiatric disorders: Psychosis and anxiety. In Hardman, J. G., Limbird, L. E., Molinoff, P. B., Ruddon, R. W., and Gillman, A. G. (eds.), The Pharmacological Basis of Therapeutics, McGraw-Hill, New York, pp. 399–430.Google Scholar
  2. Cao, W., Burkholder, T., Wilkins, L., and Collins, A. C. (1993). A genetic comparison of behavioral actions of ethanol and nicotine in the mirrored chamber.Pharmacol. Biochem. Behav. 45:803–809.Google Scholar
  3. Chapouthier, G., Bondoux, D., Martin, B., Desforges, C., and Launay, J. M. (1991). Genetic differences in sensitivity to beta-carbolines: Evidence for the involvement of brain benzodiazepine receptors.Brain Res. 553:342–346.Google Scholar
  4. Cooper, S. J. (1985). Bidirectional control of palatable food consumption through a common benzodiazepine receptor: Theory and evidence.Brain Res. Bull. 15:397–410.Google Scholar
  5. Crabbe, J. C., and Belknap, J. K. (1992). Genetic approaches to drug dependence.Trends Neurosci. 13:212–219.Google Scholar
  6. Crawley, J. N., and Davis, L. G. (1982). Baseline exploratory activity predicts anxiolytic responsiveness to diazepam in five mouse strains.Brain. Res. Bull. 8:609–612.Google Scholar
  7. Davies, M. F., Onaivi, E. S., Chen, S.-W., Maguire, P. A., Tsai, N. F., and Loew, G. H. (1994). Evidence for central benzodiazepine receptor heterogeneity from behavior tests.Pharmacol. Biochem. Behav. 49:47–56.Google Scholar
  8. Eison, A. S., and Eison, M. S. (1994). Serotonergic mechanisms in anxiety.Prog. Neuro-Psychopharmacol. Biol. Psychiatry 18:47–62.Google Scholar
  9. File, S. E., Greenblatt, D. J., Martin, I. L., and Brown, C. (1985). Long-lasting anticonvulsant effects of diazepam in different mouse strains: Correlations with brain concentrations and receptor occupancy.Psychopharmacology 86:137–141.Google Scholar
  10. Gallaher, E. J., Hollister, L. E., Gionet, S. E., and Crabbe, J. C. (1987). Mouse lines selected for genetic differences in diazepam sensitivity.Psychopharmacology 93:25–30.Google Scholar
  11. Gallaher, E. J., Gionet, S. E., and Feller, D. J. (1991). Behavioral and neurochemical studies in diazepam-sensitive and-resistant mice.J. Addict. Dis. 10:45–60.Google Scholar
  12. Gora-Maslak, G., McClearn, G. E., Crabbe, J. C., Phillips, T. J., Belknap, J. K., and Plomin, R. (1991). Use of recombinant inbred strains to identify quantitative trait loci in psychopharmacology.Psychopharmacology 104:413–424.Google Scholar
  13. Greenblatt, D. J., Shader, R. I., and Abernethy, D. R. (1983). Drug therapy. Current status of benzodiazepines.N. Engl. J. Med. 309:410–416.Google Scholar
  14. Hendel, J., Elsass, P., Sorensen, K. H., Moller, I. W., Havidberg, E. F., and Hansen, T. (1980). Anxiety and sedation during a stressful situation after a single dose of diazepam versus N-desmethyldiazepam—A controlled study.Psychopharmacology 70:303–305.Google Scholar
  15. Hirsch, J. D., Garrett, K. M., and Beer, B. (1985). Heterogeneity of benzodiazepine binding sites: A review of recent research.Pharmacol. Biochem. Behav. 23:681–685.Google Scholar
  16. Hobbs, W. R., Rall, T. W., and Verdoom, T. A. (1995). Hypnotics, sedatives: Ethanol. In Hardman, J. G., Limbird, L. E., Molinoff, P. B., Ruddon, R. W., and Gillman, A. G. (eds.), The Pharmacological Basis of Therapeutics, McGraw-Hill, New York, pp. 361–396.Google Scholar
  17. Kaplan, S. A., and Jack, M. L. (1981). Pharmacokinetics and metabolism of anxiolytics. In Hoffmeister, F., and Stille, G. (eds.), Psychotropic Agents Part II: Anxiolytics, Gerontopsychopharmacological Agents and Psychomotor Stimulants, Springer-Verlag, New York, pp. 321–358.Google Scholar
  18. Klepner, C. A., Lippa, A. S., Benson, D. I., Sano, M. C., and Beer, B. (1979). Resolution of two biochemically and pharmacologically distinct benzodiazepine receptors.Pharmacol. Biochem. Behav. 11:457–462.Google Scholar
  19. Lister, R. G. (1987). The use of a plus-maze to measure anxiety in the mouse.Psychopharmacology 92:180–185.Google Scholar
  20. Logan, L., Seale, T. W., and Carney, J. M. (1986). Inherent difference in response to methyl xanthines among inbred mouse strains.Pharmacol. Biochem Behav. 24:1281–1286.Google Scholar
  21. MacDonald, R. L., and Olsen, R. W. (1994). GABAAreceptor channels.Annu. Rev. Neurosci. 17:569–602.Google Scholar
  22. Marcucci, F., Guaitani, A., Kvetina, J., Mussini, E., and Garattini, S. (1968). Species difference in diazepam metabolism and anticonvulsant effect.Eur. J. Pharmacol. 4:467–470.Google Scholar
  23. Marley, R. J., Freund, R. K., and Wehner, J. M. (1988). Differential response to flurazepam in long-sleep and short-sleep mice.Pharmacol. Biochem. Behav. 31:453–458.Google Scholar
  24. Martin, B., Desforges, C., and Chapouthier, G. (1991). Comparison between patterns of convulsions induced by two beta-carbolines in 10 inbred strains of mice.Neurosci. Lett. 133:73–76.Google Scholar
  25. Mathis, C., Paul, S. M., and Crawley, J. N. (1994). Characterization of benzodiazepine-sensitive behaviors in the A/J and C57BL/6J inbred strains of mice.Behav. Genet. 24:171–180.Google Scholar
  26. Mathis, C., Neumann, P. E., Gershenfeld, H., Paul, S. M., and Crawley, J. N. (1995). Genetic analysis of anxiety-related behaviors and responses to benzodiazepine related drugs in AXB and BXA recombinant inbred mouse strains.Behav. Genet. 25:557–568.Google Scholar
  27. McIntyre, T. D., and Alpem, H. P. (1986). Thiopental, phenobarbital and chlordiazepoxide induce the same differences in narcotic reaction as ethanol in long-sleep and short-sleep selectively bred mice.Pharmacol. Biochem. Behav. 24:895–898.Google Scholar
  28. Möhler, H., and Okada, T. (1977). Benzodiazepine receptor: demonstration in the central nervous system.Science 198:849–851.Google Scholar
  29. Moser, P. C. (1989). An evaluation of the elevated plus-maze test using the novel anxiolytic buspirone.Psychopharmacology 99:48–53.Google Scholar
  30. Pauwels, P. J., Van Gompel, P., and Leysen, J. E. (1993). Activity of serotonin (5-HT) receptor agonists, partial agonists and antagonists at cloned human 5-HT1A receptors that are negatively coupled to adenylate cyclase in permanently transfected HeLa cells.Biochem. Pharmacol. 45:375–383.Google Scholar
  31. Pellow, S., and File, S. E. (1986). Anxiolytic and anxiogenic drug effects on exploratory activity in an elevated plusmaze: A novel test of anxiety in the rat.Pharmacol. Biochem. Behav. 24:525–529.Google Scholar
  32. Pellow, S., Chopin, P., File, S. E., and Briley, M. (1985). Validation of open:closed arm entries in an elevated plusmaze as a measure of anxiety in the rat.J. Neurosci. Methods 14:149–167.Google Scholar
  33. Randall, L. O., Scheckel, C. L., and Banziger, R. F. (1965). Pharmacology of the metabolites of chlordiazepoxide and diazepam.Curr. Ther. Res. 7:590–606.Google Scholar
  34. Sanger, D. J., Benavides, J., Perrault, G., Morel, E., Cohen, C., Joly, D., and Zivkovic, B. (1994). Recent developments in the behavioral pharmacology of benzodiazepine (ω) receptors: Evidence for the functional significance of receptor subtypes.Neurosci. Biobehav. Rev. 3:355–372.Google Scholar
  35. Seale, T. W., Abla, K. A., Roderick, T. H., Rennert, O. M., and Carney, J. M. (1987a). Different genes specify hyporesponsiveness to seizures induced by caffeine and the benzodiazepine inverse agonist, DMCM.Pharmacol. Biochem. Behav. 27:451–456.Google Scholar
  36. Seale, T. W., Carney, J. M., Flux, M., Rennert, O. M., and Skolnick, P. (1987b). Coincident susceptibility to seizures induced by caffeine and the benzodiazepine inverse agonist, DMCM, in SWR and CBA inbred mice.Pharmacol. Biochem. Behav. 26:381–387.Google Scholar
  37. Seale, T. W., Roderick, T., and Skolnick, P. (1987c). Ontogeny of susceptibility to the convulsant, RO 5–4864, and its relationship to audiogenic seizure susceptibility in inbred mice.Life Sci. 40:1267–1276.Google Scholar
  38. Seale, T. W., Abla, K. A., Shamin, M. T., Carney, J. M., and Daly, J. W. (1988). 3,7-Dimethyl-1-propargylxanthine: A potent and relative in vivo antagonist for adenosine analogs.Life Sci. 43:1671–1684.Google Scholar
  39. Seale, T. W., Niekrasz, I., and Garrett, K. M. (1996). Anxiolysis by ethanol, diazepam and buspirone in a novel murine behavioral assay.Neuroreport 7:1803–1808.Google Scholar
  40. Shader, R. I., and Greenblatt, D. J. (1993). Use of benzodiazepines in anxiety disorders.N. Engl. J. Med. 328:1398–1405.Google Scholar
  41. Squires, R. F., and Braestrup, C. (1977). Benzodiazepine receptors in rat brain.Nature 266:732–734.Google Scholar
  42. Study, R. E., and Barker, J. L. (1981). Diazepam and (−)-pentobarbital: Fluctuation analysis reveals different mechanisms for potentiation of γ-aminobutyric acid responses in cultured central neurons.Proc. Natl. Acad. Sci. USA 78:7180–7184.Google Scholar
  43. Sussman, N. (1993). Treating anxiety while minimizing abuse and dependence.J. Clin. Psychiat. 54(Suppl.):44–51.Google Scholar
  44. Suzuki, T., Lu, M. S., Montegi, M., Yoshii, T., and Misawa, M. (1992). Genetic differences in the development of physical dependence upon diazepam in Lewis and Fisher 344 inbred rat strains.Pharmacol. Biochem. Behav. 43:387–393.Google Scholar
  45. Toubas, P. L., Abla, K. A., Cao, W., and Seale, T. W. (1990). Latency to enter a mirrored chamber: A novel behavioral assay for anxiolytic agents.Pharmacol. Biochem. Behav. 35:121–126.Google Scholar
  46. Trullas, R., and Skolnick, P. (1993). Differences in fear motivated behaviors among inbred mouse strains.Psychopharmacology 111:323–331.Google Scholar
  47. Van der Laan, J. W., de Boer, S. F., Van der Gugten, J., and de Groot, G. (1991). Differences in the duration of sedative and anxiolytic effects of desmethyl diazepam in two outbred Wistar strains.Pharmacol. Biochem. Behav. 39:149–153.Google Scholar
  48. Woods, S. W., and Charney, D. S. (1988). Benzodiazepines. A review of benzodiazepine treatment of anxiety disorders: pharmacology, efficacy and implications for pathophysiology. In Last, C. G., and Hersen, M. (eds.), Handbook of Anxiety Disorders, Pergamon Press, New York, pp. 413–444.Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • Kennon M. Garrett
    • 1
  • Iwona Niekrasz
    • 2
  • Dewan Haque
    • 1
  • K. Michael Parker
    • 3
  • Thomas W. Seale
    • 4
  1. 1.Department of PhysiologyUSA
  2. 2.Department of PediatricsUSA
  3. 3.Department of PathologyUniversity of Oklahoma Health Sciences CenterOklahoma City
  4. 4.Department of PediatricsUniversity of Oklahoma Health Sciences CenterOklahoma City

Personalised recommendations