Journal of Low Temperature Physics

, Volume 129, Issue 5–6, pp 363–421 | Cite as

Nucleation in Quantum Liquids

  • Sébastien Balibar

Abstract

In order to understand how nucleation proceeds in quantum liquids such as 4He and 3He, and the peculiarities of such quantum systems, I present a review of nucleation in condensed matter. By describing successive experiments, I first illustrate the interest and use of the elementary "standard theory" of nucleation. Then I consider its limitations and the existence of "spinodal" and instability limits, possibly in the frame of "density functional" methods. When finally discussing nucleation at low temperature, I consider a further improvement of the standard theory, namely the possibility of nucleation by quantum tunneling. The main emphasis is on crystallization and cavitation in liquid helium, but I also consider water, liquid hydrogen, wetting, the nucleation of steps on crystal surfaces, vortices etc.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    P. Taborek, Phys. Rev. B 32, 5902 (1985).Google Scholar
  2. 2.
    Q. Zheng, D.J. Durben, G.H. Wolf and C.A. Angell, Science 254, 829 (1991).Google Scholar
  3. 3.
    S. Balibar and H.J. Maris, Physics Today 53, 29 (2000).Google Scholar
  4. 4.
    W.F. Pickard, Prog. Biophys. Mol. Biol. 37, 181 (1981).Google Scholar
  5. 5.
    L. Landau and E. Lifshitz, Statistical Physics, Chapter 162, p. 533.Google Scholar
  6. 6.
    D.W. Oxtoby, J. Phys.: Cond. Matt. 4, 7627 (1992).Google Scholar
  7. 7.
    M. Blander and J.L. Katz, A.I.Ch.E. J. 21, 853 (1975).Google Scholar
  8. 8.
    H. Kramers, Physica (Utrecht) 7, 284 (1940).Google Scholar
  9. 9.
    H. Grabert, P. Olshowski and U. Weiss, Phys. Rev. B 36, 1931 (1987).Google Scholar
  10. 10.
    D. Turnbull and J.C. Fisher, J. Chem. Phys. 17, 71 (1948).Google Scholar
  11. 11.
    M.S. Pettersen, S. Balibar and H.J. Maris, Phys. Rev. B 49, 12062 (1994).Google Scholar
  12. 12.
    G. Seidel, H.J. Maris, F.I.B. Williams and J.G. Cardon, Phys. Rev. Lett. 56, 2380 (1986).Google Scholar
  13. 13.
    H.J. Maris, G. Seidel and T.E. Huber, J. Low Temp. Phys. 51, 471 (1983).Google Scholar
  14. 14.
    D.D. Osheroff and M. Cross, Phys. Rev. Lett. 38, 905 (1977). See also Ref. 17.Google Scholar
  15. 15.
    A.J. Leggett, Phys. Rev. Lett. 53, 1096 (1984).Google Scholar
  16. 16.
    S. Balibar, T. Mizusaki and Y. Sasaki, J. Low Temp. Phys. 120, 293 (2000).Google Scholar
  17. 17.
    P. Schiffer, D.D. Osheroff and A.J. Leggett, Prog. in Low Temp. Phys., Vol. XIV, ed. W.P. Halperin (Elsevier, 1995), p. 159.Google Scholar
  18. 18.
    D. Bonn and D. Ross, Rep. Prog. Phys. 64, 1085 (2001).Google Scholar
  19. 19.
    D.N. Sinha, J.C. Semura and L.C. Brodie, Phys. Rev. A 26, 1048 (1982).Google Scholar
  20. 20.
    D. Lezak, L.C. Brodie, J.S. Semura and E. Bodegom, Phys. Rev. B 37, 150 (1988).Google Scholar
  21. 21.
    J.A. Nissen, E. Bodegom, L.C. Brodie and J.S. Semura, Phys. Rev. B 40, 6617 (1989).Google Scholar
  22. 22.
    H. Lambaré, P. Roche, S. Balibar, H.J. Maris, O.A. Andreeva, C. Guthmann, K.O. Kehsishev and E. Rolley, Eur. Phys J. B 2, 381 (1998).Google Scholar
  23. 23.
    F. Caupin and S. Balibar, Phys. Rev. B 64, 064507 (2001).Google Scholar
  24. 24.
    X. Chavanne, S. Balibar and F. Caupin, J. Low Temp. Phys. 125, 155 (2001); X. Chavanne, S. Balibar and F. Caupin, Phys. Rev. Lett. 86, 5506 (2001).Google Scholar
  25. 25.
    S. Balibar and P. Nozières, Sol. State Comm. 92,19 (1994).Google Scholar
  26. 26.
    P. Nozières, in Solids far from equilibrium, Lectures at the Beg-Rohu summer school, ed. C. Godrèche (Cambridge University Press, 1992).Google Scholar
  27. 27.
    P.E. Wolf, F. Gallet, S. Balibar and P. Nozières, J. Physique 46, 1987 (1985).Google Scholar
  28. 28.
    X. Chavanne, S. Balibar and F. Caupin, J. Low Temp. Phys. 126, 615 (2002)Google Scholar
  29. 29.
    C. Appert, C. Tenaud, X. Chavanne, S. Balibar, F. Caupin and D. d'Humières, to be published; X. Chavanne, S. Balibar, F. Caupin, C. Appert and D. d'Humières, J. Low Temp. Phys. 126, 643 (2002).Google Scholar
  30. 30.
    H.J. Maris and Q. Xiong, Phys. Rev. Lett. 63, 1078 (1989).Google Scholar
  31. 31.
    H.J. Maris, Phys. Rev. Lett. 66, 45 (1991).Google Scholar
  32. 32.
    D.O. Edwards and H.J. Maris, to be published.Google Scholar
  33. 33.
    J. Boronat, J. Casulleras and J. Navarro, Phys. Rev. B 50, 3427 (1994).Google Scholar
  34. 34.
    F. Dalfovo, A. Lastri, L. Pricaupenko, S. Stringari and J. Treiner, Phys. Rev. B 52, 1193 (1995).Google Scholar
  35. 35.
    J. Cahn and J. Hilliard, J. Chem. Phys. 31, 688 (1959).Google Scholar
  36. 36.
    H.J. Maris J. Low Temp. Phys. 94, 125 (1994).Google Scholar
  37. 37.
    H.J. Maris, J. Low Temp. Phys. 98, 403 (1995).Google Scholar
  38. 38.
    A. Guirao, M. Centelles, M. Barranco, M. Pi, A. Polls and X. Vinãs, J. Phys.: Cond. Mat. 4, 667 (1992).Google Scholar
  39. 39.
    For a general introduction to the physics of liquid helium, and a description of “rotons” which were introduced by Landau in 1941-47, see J. Wilks, The properties of liquid and solid helium (Clarendon Press, Oxford, 1967).Google Scholar
  40. 40.
    C.E. Campbell, R. Folk and E. Krotschek, J. Low Temp. Phys. 105, 13 (1996).Google Scholar
  41. 41.
    G.H. Bauer, D.M. Ceperley and N. Goldenfeld, Phys. Rev. B 61, 9055 (2000) and references therein.Google Scholar
  42. 42.
    S.C. Hall and H.J. Maris, J. Low Temp. Phys. 107, 263 (1997).Google Scholar
  43. 43.
    M. Guilleumas, M. Pi, M. Barranco, J. Navarro, and M.A. Solis, Phys. Rev. B 47, 9116 (1993).Google Scholar
  44. 44.
    M. Barranco and M. Pi, private communications (2002).Google Scholar
  45. 45.
    S.C. Hall, J. Classen, C.K. Su and H.J. Maris, J. Low Temp. Phys. 101, 793 (1995).Google Scholar
  46. 46.
    F. Caupin, S. Balibar and H.J. Maris, Phys. Rev. Lett. 87, 145302 (2001).Google Scholar
  47. 47.
    P.G. Debenedetti and M.C. d'Antonio, J. Chem. Phys. 84, 3339 (1986) and J. Chem. Phys. 85, 4005 (1986); M.C. d'Antonio and P.G. Debenedetti, J. Chem. Phys. 86, 2229 (1987).Google Scholar
  48. 48.
    R.J. Speedy, J. Phys. Chem. 86, 982 (1982) and J. Phys. Chem. 86 3002 (1982).Google Scholar
  49. 49.
    S. Sastry, P.G. Debenedetti, F. Sciortino and H.E. Stanley, Phys. Rev. E 53, 6144 (1996).Google Scholar
  50. 50.
    P.R. Roach, Y. Eckstein, M.W. Meisel and L. Aniola-Jedrzejek, J. Low Temp. Phys. 52, 433 (1983).Google Scholar
  51. 51.
    C. Boghosian, H. Meyer and J.E. Rives, Phys. Rev. 146, 110 (1966).Google Scholar
  52. 52.
    M.R. Gibbs, K.H. Andersen, W.G. Stirling, and H. Schober, J. Phys.: Condens. Matter 11, 603 (1999).Google Scholar
  53. 53.
    M. Wanner and P. Leiderer, Phys. Rev. Lett. 42, 315 (1979); W. Ebner and P. Leiderer, Physics Letters 80A, 277 (1980).Google Scholar
  54. 54.
    T. Schneider and C.P. Enz, Phys. Rev. Lett. 27, 1186 (1971).Google Scholar
  55. 55.
    J.P. Ruutu, P.J. Halonen, J.S. Pentila, A.V. Babkin, J.P. Saramäki and E.B. Sonin, Phys. Rev. Lett. 77, 2514 (1996).Google Scholar
  56. 56.
    E. Varoquaux, M.W. Meisel and O. Avenel, Phys. Rev. Lett. 57, 2291 (1986); J. Steinbauer, K. Schwab, Yu. Mukharski, J.C. Davis and R.E. Packard, Phys. Rev. Lett. 74, 5056 (1995).Google Scholar
  57. 57.
    M.H. Devoret, J.M. Martinis and J. Clarke, Phys. Rev. Lett. 55, 1908 (1985); J.M. Martinis, M.H. Devoret and J. Clarke, Phys. Rev. Lett. 55, 1543 (1985).Google Scholar
  58. 58.
    L. Landau and E. Lifshitz, Quantum Mechanics (Pergamon, Oxford, 1965), Chapter 7.Google Scholar
  59. 59.
    J.S. Langer, Ann. Phys. 41, 108 (1967)Google Scholar
  60. 60.
    I.M. Lifshitz and Yu. Kagan, Sov. Phys. JETP 62, 385 (1972).Google Scholar
  61. 61.
    S. Coleman, Phys. Rev. D 15, 2929 (1977), C.G. Callan and S. Coleman, Phys. Rev. D 16, 1762 (1977)Google Scholar
  62. 62.
    A.O. Caldeira and A.J. Leggett, Phys. Rev. Lett. 46, 211 (1981).Google Scholar
  63. 63.
    T. Nakamura, Y. Kanno and S. Takagi, Phys. Rev. B 51, 8446 (1995).Google Scholar
  64. 64.
    M. Guilleumas, M. Barranco, D.M. Jezek, R.J. Lombard and M. Pi, Phys. Rev. B 54, 16135 (1996).Google Scholar
  65. 65.
    D. Jezek, M. Pi and M. Barranco, Phys. Rev. B60, 3048 (1999).Google Scholar
  66. 66.
    F. Caupin, S. Balibar and H.J. Maris, J. Low Temp. Phys. 126, 91 (2001).Google Scholar
  67. 67.
    J. Classen, C.K. Su and H.J. Maris, Phys. Rev. Lett. 77, 2006 (1996).Google Scholar
  68. 68.
    D. Konstantinov, W. Homsi, J. Luzuriaga, C.K. Su, M.A. Weilert and H.J. Maris, J. Low Temp. Phys. 113, 485 (1998).Google Scholar
  69. 69.
    H.J. Maris, J. Low Temp. Phys. 94, 125 (1994).Google Scholar
  70. 70.
    F. Dalfovo, Phys. Rev. B 46, 5482 (1982).Google Scholar
  71. 71.
    For experiments, see V. Chagovets, I. Usherov-Marshak, G. Sheshin and A. Ya. Rudavskii, J. Low Temp. Phys. 110, 473 (1998), E. Tanaka, K. Hatakeyama, S. Noma, S.N. Burmistrov and T. Satoh, J. Low Temp. Phys. 127 81 (2002), and references therein; for theory, see D.M. Jezek, M. Pi, M. Barranco, R.J. Lombard and M. Guilleumas, J. Low Temp. Phys. 112, 303 (1998), and M. Barranco, M. Guilleumas, M. Pi, D.M. Jezek and J. Navarro Liquids under negative Pressure, NATO Science Series, eds. A.R. Imre, H.J. Maris and P.R. Williams, (Kluwer, Dordrecht, 2002) as well as M. Barranco, M. Guilleumas, M. Pi and D. Jezek Advances in quantum many-body theory, eds. by E. Krotscheck and J. Navarro (World Scientific, London, 2002), Vol. 4, Chapter 7, and references therein.Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • Sébastien Balibar
    • 1
  1. 1.Laboratoire de Physique Statistique de L'Ecole Normale Supérieureassocié aux Universités Paris 6 et 7 et au CNRSParis Cedex 05France

Personalised recommendations