Mathematical Notes

, Volume 72, Issue 5–6, pp 863–867 | Cite as

A Note on the Description of Frames of General Form

  • B. S. Kashin
  • T. Yu. Kulikova
Article
frame tight frame Riesz basis Hilbert space 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    R. Duffin and A. Schaeffer, Trans. Amer. Math. Soc., 72 (1952), no. 2, 341-266.Google Scholar
  2. 2.
    I. Daubechies, Ten Lectures on Wavelets, SIAM, Philadelphia, PA, 1992.Google Scholar
  3. 3.
    N. I. Akhiezer and I. M. Glazman, Theory of Linear Operators in Hilbert space [in Russian], Nauka, Moscow, 1966.Google Scholar
  4. 4.
    M. A. Naimark, Izv. Akad. Nauk SSSR Ser. Mat. [Math. USSR-Izv.], 4 (1940), no. 3, 277-318.Google Scholar
  5. 5.
    V. Ya. Kozlov, Mat. Sb. [Math. USSR-Sb.], 23 (1948), no. 3, 441-474.Google Scholar
  6. 6.
    A. M. Olevskii, Mat. Zametki [Math. Notes], 6 (1969), 737-747.Google Scholar
  7. 7.
    B. S. Kashin and A. A. Saakyan, Orthogonal Series [in Russian], 2nd ed., AFTs, Moscow, 1999.Google Scholar
  8. 8.
    T. P. Lukashenko, Mat. Sb. [Russian Acad. Sci. Sb. Math.], 188 (1997), no. 12, 57-72.Google Scholar
  9. 9.
    A. S. Kholevo, Introduction to Quantum Information Theory [in Russian], MTsNMO, Moscow, 2002.Google Scholar
  10. 10.
    B. S. Kashin and T. Yu. Kulikova, Mat. Zametki [Math. Notes], 72 (2002), no. 2, 312-315.Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • B. S. Kashin
    • 1
  • T. Yu. Kulikova
    • 2
  1. 1.V. A. Steklov Mathematics InstituteRussian Academy of SciencesRussia
  2. 2.Actuary Financial Research CenterRussia

Personalised recommendations