Water, Air, and Soil Pollution

, Volume 141, Issue 1–4, pp 349–382 | Cite as

A Global Analysis of Acidification and Eutrophication of Terrestrial Ecosystems

  • A. F. BouwmanEmail author
  • D. P. Van Vuuren
  • R. G. Derwent
  • M. Posch


This paper presents an explorative, quantitative analysis of acidification and eutrophication of natural terrestrial ecosystems caused by excess sulfur (S) and nitrogen (N) deposition. The analysis is based on a steady-state approach, involving the comparison of deposition fluxes with critical loads to identify areas where critical loads are exceeded. Deposition fields for sulfur and nitrogen were obtained from the STOCHEM global chemistry-transport model, and they were combined with estimated base cation deposition to derive net acid deposition fluxes. The results indicate that the critical loads for acidification are exceeded in 7–17% of the global area of natural ecosystems. In addition, comparison of nitrogen deposition with critical loads for eutrophication yielded an exceedance in 7–18% of the global natural ecosystems. Apart from serious problems in the heavily industrialized regions of eastern USA, Europe, the former Soviet Union, and large parts of Asia, risks are also found in parts of South America, and West, East and Southern Africa. Both acidification and eutrophication risks could significantly increase in Asia, Africa and South America in the near future, and decrease in North America and Western Europe. Accounting for the effects of N in the analysis of acidification significantly enlarges the potentially affected areas and moves them away from highly industrialized areas compared to studies considering S deposition alone. Major uncertainties in the approach followed are associated with upscaling, the estimates of S, N and base cation emission and deposition fluxes, the critical loads to describe ecosystem vulnerability and the treatment of soil N immobilization and denitrification.

acidification base cations deposition ecosystems eutrophication global extrapolation nitrogen sulfur upscaling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Asman, W. A. H.: 1998, ‘Factors influencing local dry deposition of gases with special reference to ammonia’, Atmos. Environ. 32, 415–421.CrossRefGoogle Scholar
  2. Atkinson, R., Baulch, D. L., Cox, R. A., Hampson, R. F., Kerr, J. A., Rossi, M. J. and Troe, J.: 1996, ‘Evaluated kinetic and photochemical data for atmospheric chemistry’, Supplement V. IUPAC subcommittee on gas kinetic data evaluation for atmospheric chemistry, Atmos. Environ. 30, 3903–3904.CrossRefGoogle Scholar
  3. Ayers, G. P., Gillet, R. W., Selleck, P. W. and Bentley, S. T.: 1995, ‘Rainwater composition and acid deposition in the vicinity of fossil fuel-fired power plants in southern Australia’, Water Air Soil Pollut. 85, 2313–2318.CrossRefGoogle Scholar
  4. Batjes, N. H.: 1997, ‘A world dataset of derived soil properties by FAO/Unesco soil unit for global modeling’, Soil Use Manag. 13, 9–16.Google Scholar
  5. Batjes, N. H. and Bridges, E. M.: 1994, ‘Potential emissions of radiatively active gases from soil to atmosphere with special reference to methane: development of a global database (WISE)’, J. Geophys. Res. 99, 16479–16489.CrossRefGoogle Scholar
  6. Bobbink, R., Hornung, M. and Roelofs, J. G. M.: 1996, ‘Empirical Nitrogen Critical Loads for Natural and Semi-Natural Ecosystems’, in Manual on Methodologies and Criteria for Mapping Critical Levels/Loads and Geographic Areas where they are Exceeded, UNECE Convention on Long-range Transboundary Air Pollution, Federal Environmental Agency (Umweltbundesamt), Berlin, pp. III.1-III.45. (available at Scholar
  7. Bobbink, R., Hornung, M. and Roelofs, J. G. M.: 1998, ‘The effects of air-borne nitrogen pollutants on species diversity in natural and semi-natural European vegetation’, J. Ecol. 86, 717–738.CrossRefGoogle Scholar
  8. Bouwman, A. F. and Van Vuuren, D. P.: 1999, ‘Global Assessment of Acidification and Eutrophication of Natural Ecosystems’, Tech. Rep. UNEP/DEIA&;EW/TR.99-6/RIVM 402001012, United Nations Environment Programme, Division of Environmental Information, Assessment and Early Warning, and Natl. Inst. Public Health and the Environ., Nairobi, Kenya, and Bilthoven, The Netherlands, 52 pp.Google Scholar
  9. Bouwman, A. F., Derwent, R. G. and Dentener, F. J.: 1999, ‘Towards Reliable Global Bottom-Up Estimates of Temporal and Spatial Patterns of Emissions of Trace Gases and Aerosols from Land-Use Related and Natural Sources’, in A. F. Bouwman, (ed.), Approaches to Scaling of Trace Gas Fluxes in Ecosystems, Elsevier Science, New York, pp. 1–26.Google Scholar
  10. Bouwman, A. F., Fung, I., Matthews, E. and John, J.: 1993, ‘Global analysis of the potential for N2O production in soils’, Global Biogeochem. Cycles 7, 557–597.CrossRefGoogle Scholar
  11. Bouwman, A. F., Lee, D. S., Asman, W. A. H., Dentener, F. J., Van Der Hoek, K. W. and Olivier, J. G. J.: 1997, ‘A global high-resolution emission inventory for ammonia’, Global Biogeochem. Cycles 11, 561–587.CrossRefGoogle Scholar
  12. Brown, V. C.: 1995, ‘Insect Herbivores and Gaseous Air Pollution: Current Knowledge and Predictions’, in R. Harrington and N. E. Stork (eds), Insects in a changing environment, Academic Press, London, pp. 22–29.Google Scholar
  13. Chin, M., Jacob, D. J., Gardner, G. M., Foreman-Fowler, M. S. and Spiro, P. A.: 1996, ‘A global three-dimensional model of tropospheric sulphate’, J. Geophys. Res. 101, 18667–18690.CrossRefGoogle Scholar
  14. Cinderby, C., Cambridge, H. M., Herrera, R., Hicks, W. K., Kuylenstierna, J. C. I., Murray, F. and Olbrich, K.: 1998, ‘Global Assessment of Ecosystem Sensitivity to Acidic Deposition’, Stockholm Environment Institute, Stockholm, 19 pp.Google Scholar
  15. Collins, W. J., Stevenson, D. S., Johnson, C. E. and Derwent, R. G.: 1997, ‘Tropospheric ozone in a global-scale three-dimensional Lagrangian model and its response to NOx emission controls’, J. Atmos. Chem. 26, 223–274.CrossRefGoogle Scholar
  16. Conrad, R. and Dentener, F.: 1999, ‘The Application of the Compensation Point Concepts in Scaling of Fluxes’, in A. F. Bouwman (ed.), Scaling of Trace Gas Fluxes between Terrestrial and Aquatic Ecosystems and the Atmosphere, Elsevier Science, New York, pp. 205–216.Google Scholar
  17. Cullen, M. J. P.: 1993, ‘The unified forecast/climate model’, Meteorological Magazine 122, 81–94.Google Scholar
  18. De Vries, W., Posch, M., Reinds, G. J. and Kämäri, J.: 1993, ‘Critical Loads and their Exceedance on Forest Soils in Europe’, Report 58 (revised ed.), The Winand Staring Centre for Integrated Land, Soil and Water Research, Wageningen, The Netherlands, 116 pp.Google Scholar
  19. DeMore, W. B., Sander, S. P., Golden, D. M., Hampson, R. F., Kurylo, M. J., Howard, C. J., Ravishankara, A. R., Kolb, C. E. and Molina, M. J.: 1997, ‘Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling’, Report 97-4, JPL Evaluation Number 12. Jet Propulsion Laboratory, Pasadena, California.Google Scholar
  20. Dentener, F. J. and Crutzen, P. J.: 1994, ‘A three-dimensional model of the global ammonia cycle’, J. Atmos. Chem. 19, 331–369.CrossRefGoogle Scholar
  21. Draaijers, G. P. J., Van Leeuwen, E. P., Potma, C., Van Pul, W. A. J. and Erisman, J. W.: 1995, ‘Mapping base cation deposition in Europe on a 10 ×20 km grid’, Water, Air, Soil Pollut. 85, 2389–2394.CrossRefGoogle Scholar
  22. Duyzer, J. H., Verhagen, H. L. M., Westrate, J. H. and Bosveld, F. C.: 1994, ‘The dry deposition of ammonia onto a Douglas fir forest in the Netherlands’, Atmos. Environ. 28, 1241–1253.CrossRefGoogle Scholar
  23. Feichter, J., Kjellstrom, E., Rodhe, H., Dentener, F., Lelieveld, J. and Roelofs, G.-J.: 1996, ‘Simulation of the tropospheric sulfur cycle in a global climate model’, Atmos. Environ. 30, 1693–1707.CrossRefGoogle Scholar
  24. Flechard, C. R. and Fowler, D.: 1998, ‘Atmospheric ammonia at a moorland site. II: Long term surface-atmosphere micrometeorological flux measurements’, Quart. J. Royal Meteorol. Soc. 124, 759–791.CrossRefGoogle Scholar
  25. FAO/Unesco: 1974-1981, Soil Map of the World 1:5,000,000, Vol. I-X, Unesco, Paris.Google Scholar
  26. FAO: 1995, Digital Soil Map of the World and Derived Soil Properties (version 3.5), Food and Agriculture Organization of the United Nations, Rome.Google Scholar
  27. FAO: 2000, ‘FAOSTAT Database Collections’, Available from, Food and Agriculture Organization of the United Nations, Rome.Google Scholar
  28. Foell, W., Green, C., Amann, M., Bhattacharya, S., Carmichael, G., Chadwick, M., Hettelingh, J.-P., Hordijk, L., Shah, J., Shrestra, R., Streets, D. and Zhao, D.: 1995, ‘Energy use, emissions, and air pollution reduction strategies in Asia’, Water, Air, Soil, Pollut. 85, 2277–2282.CrossRefGoogle Scholar
  29. Galloway, J. N., Schlesinger, W. H., Levy II, H., Michaels, A. and Schnoor, J. L.: 1995, Nitrogen fixation: Anthropogenic enhancement and environmental response, Global Biogeochem. Cycles 9, 235–252.CrossRefGoogle Scholar
  30. Granat, L., Suksomsankh, K., Simachaya, S., Tabucanon, M. and Rodhe, H.: 1996, ‘Regional background acidity and chemical composition of precipitation in Thailand’, Atmos. Environ. 30, 1589–1596.CrossRefGoogle Scholar
  31. Guerzoni, S., Cristini, A., Le Bolloch, O., Marras, I. and Rundedu, L.: 1995, ‘Ionic composition of rainwater and atmospheric aerosols is Sardinia, Southern Mediterranean’, Water, Air, Soil Pollut. 85, 2077–2082.CrossRefGoogle Scholar
  32. Hara, H.: 1993, ‘Monitoring of acid deposition in Japan’, in Proceedings of the expert meeting on acid precipitation monitoring network in East Asia, Toyama, Japan. Quoted in Chang, Y.-S., Arndt, R. L. and Carmichael, G. R.: 1996, ‘Mineral base-cation deposition in Asia’, Atmos. Environ. 30, 2417-2427.Google Scholar
  33. Hara, H., Kitamura, M., Mori, A., Noguchi, I., Ohizomi, T., Seto, S., Takeuchi, T. and Deguchi, T.: 1995, ‘Precipitation chemistry in Japan 1989-1993’, Water, Air, Soil Pollut. 85, 2307–2312.CrossRefGoogle Scholar
  34. Hedin, L. O., Granat, L., Likens, G. E., Buishand, T. A., Galloway, J. N., Butler, T. J. and Rodhe, H.: 1994, ‘Steep declines in atmospheric base cations in regions of Europe and North America’, Nature 367, 351–354.CrossRefGoogle Scholar
  35. Heij, G. J. and Schneider, T.: 1991, Acidification Research in The Netherlands, Elsevier, Amsterdam.Google Scholar
  36. Hettelingh, J.-P., Posch, M., De Smet, P. A. M. and Downing, R. J.: 1995, ‘The use of critical loads in emission reduction agreements in Europe’, Water, Air, Soil Pollut. 85, 2381–2388.CrossRefGoogle Scholar
  37. Holland, E. A., Brasswell, B. H., Lamarque, J. F., Townsend, A., Sulzman, J., Muller, J. F., Dentener, F., Brasseur, G., Levy II, H., Penner, J. E., Roelofs, G. J.: 1997, ‘Variations in the predicted spatial distribution of atmospheric nitrogen deposition and their impact on carbon uptake by terrestrial ecosystems’, J. Geophys. Res. 102, 15849–15866.CrossRefGoogle Scholar
  38. Hough, A. M.: 1991, ‘Development of a global two-dimensional tropospheric model: Model chemistry’, J. Geophys. Res. 96, 7325–7362.Google Scholar
  39. Hultberg, H. and Ferm, M.: 1995, ‘Measurements of atmospheric deposition and internal circulation of base cations to a forested catchment area’, Water, Air, Soil, Pollut. 85, 2235–2240.CrossRefGoogle Scholar
  40. IPCC: 1992, Climate Change 1992, Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, U.K.Google Scholar
  41. Kreileman, E., van Woerden, J. and Bakkes, J.: 1998, ‘RIVM Environmental Research 1998 World Regions and Subregions’. Report CIM M025/98, Natl. Inst. Public Health and the Environ., Bilthoven, The Netherlands.Google Scholar
  42. Kuylenstierna, J. C. I, Cinderby, S. and Cambridge, H.: 1998a, ‘Risks from Future Air Pollution’, in J. Kuylenstierna, and K. Hicks (eds), Regional Air Pollution in Developing Countries, Stockholm Environment Institute, York, U.K.Google Scholar
  43. Kuylenstierna, J. C. I, Hicks, W. K., Cinderby, S. and Cambridge, H.: 1998b, ‘Critical loads for nitrogen deposition and their exceedance at European scale’, Environ. Pollut. 102(S1), 591–598.CrossRefGoogle Scholar
  44. Langner, J. and Rodhe, H.: 1991, ‘A global three-dimensional model of the tropospheric sulphur cycle’, J. Atmos. Chem. 13, 225–263.CrossRefGoogle Scholar
  45. Le Bolloch, O. and Guerzoni, S.: 1995, ‘Acid and alkaline deposition in precipitation on the western coast of Sardinia, Central Mediterranean’, Water, Air, Soil, Pollut. 85, 2155–2160.CrossRefGoogle Scholar
  46. Lee, D. S., Espenhahn, S. E. and Baker, S.: 1998, ‘Evidence for long-term changes in base cations in the atmospheric aerosol’, J. Geoph. Res. 103, 21955–21966.CrossRefGoogle Scholar
  47. Lee, D. S., Kingdon, R. D., Pacyna, J. M., Bouwman, A. F. and Tegen, I.: 1999, ‘Modeling base cations in Europe - sources, transport and deposition of calcium’, Atmos. Environ. 33, 2241–2256.CrossRefGoogle Scholar
  48. Lee, D. S., Köhler, I., Grobler, E., Rohrer, F., Sausen, R., Gallardo-Klenner, L., Olivier, J. G. J., Dentener, F. J. and Bouwman, A. F.: 1997, ‘Estimations of global NOx emissions and their uncertainties’, Atmos. Environ. 31, 1735–1749.CrossRefGoogle Scholar
  49. Lelieveld, J., Crutzen, P. J., Dentener, F. J. and Holland, E.: 1998, ‘Changing concentration, lifetime and climate forcing of atmospheric methane’, Tellus 50B, 128–150.Google Scholar
  50. Likens, G. E., Driscoll, C. T. and Buso, D. C.: 1996, ‘Long-term effects of acid rain: Response and recovery of a forest ecosystem’, Science 272, 244–246.CrossRefGoogle Scholar
  51. Markewitz, D., Richter, D. D., Lee Allen, H. and Urrego, J. B.: 1998, ‘Three decades of observed soil acidification in the Calhoun experimental forest: Has acid rain made a difference?’, Soil Sci. Soc. Am. J. 62, 1428–1439.CrossRefGoogle Scholar
  52. Morales, J. A., Bifano, C. and Escalona, A.: 1995, ‘Rainwater chemistry at thge western savannah region of the Lake Maracaibo Basin, Venezuela’, Water, Air, Soil, Pollut. 85, 2325–2330.CrossRefGoogle Scholar
  53. Mosier, A. R., Kroeze, C., Nevison, C., Oenema, O., Seitzinger, S. and van Cleemput, O.: 1998, ‘Closing the global N2O budget: nitrous oxide emissions through the agricultural nitrogen cycle’, Nutrient Cycling Agroecosys. 52, 225–248.CrossRefGoogle Scholar
  54. Murphy, D. M. and Fahey, D. W.: 1994, ‘An estimate of the flux of stratospheric reactive nitrogen and ozone into the troposphere’, J. Geophys. Res. 99, 5325–5332.CrossRefGoogle Scholar
  55. Nadelhoffer, K. J., Emmet, B. A., Gundersen, P., Kjonaas, O. J., Koopmans, C. J., Schleppi, P., Tietema, A. and Wright, R. F.: 1999, ‘Nitrogen deposition makes a minor contribution to carbon sequestration in temperate forests’, Nature 398, 145–148.CrossRefGoogle Scholar
  56. Nilsson, J. and Grennfelt, P. (eds): 1988, ‘Critical Loads for Sulphur and Nitrogen’, Nord 1988:97, Nordic Council of Ministers, Copenhagen, 418 pp.Google Scholar
  57. Noguchi, I., Kato, T., Akiyama, M., Otsuka, H. and Matsumoto, Y.: 1995, ‘The effect of alkaline dust decline on the precipitation chemistry in northern Japan’, Water, Air, Soil, Pollut. 85, 2357–2361.CrossRefGoogle Scholar
  58. Olivier, J. G. J., Bouwman, A. F., van der Hoek, K. W. and Berdowski, J. J. M.: 1998, ‘Global air emission inventories for anthropogenic sources of NOx, NH3 and N2 O in 1990’, Environ. Pollut. 102(S1), 135–148.CrossRefGoogle Scholar
  59. Olivier, J. G. J., Bouwman, A. F., van der Maas, C. W. M., Berdowski, J. J. M., Veldt, C., Bloos, J. P. J., Visschedijk, A. J. H., Zandveld, P. Y. J. and Haverlag, J. L.: 1996, ‘Description of EDGAR Version 2.0. A Set of Global Emission Inventories of Greenhouse Gases and Ozone-Depleting Substances for all Anthropogenic and most Natural Sources on a per Country Basis and on 1 ×1 Grid’, Tech. Report 771060002, Natl. Inst. Public Health and the Environ., 141 pp.Google Scholar
  60. Olson, J. S., Watts, J. A. and Allison, L. J.: 1983: ‘Carbon in Live Vegetation of Major World Ecosystems’, ORNL 5862. Env. Sci. Div. Publ. 1997, Oak Ridge National Laboratory, Oak Ridge, Tenn., Natl. Tech. Inf. Serv., Springfield, Va.Google Scholar
  61. Penner, J. E., Atherton, C. S., Dignon, J., Ghan, S. J., Walton, J. J. and Hameed, S.: 1991, ‘Tropospheric nitrogen: A three-dimensional study of sources, distributions and deposition’, J. Geophys. Res. 96, 959–990.Google Scholar
  62. Pepper, W., Leggett, J., Swart, R., Wasson, J., Edmonds, J. and Mintzer, I.: 1992, ‘Emission Scenarios for the IPCC, an Update. Assumptions, Methodology and Results’, prepared for the Intergovernmental Panel on Climate Change, Working Group I.Google Scholar
  63. Posch, M. and De Vries, W.: 1999, ‘Derivation of Critical Loads by Steady-State and Dynamic Models’, in S. J. Langan, (ed.), The Impact of Nitrogen Deposition on Natural and Semi-Natural Ecosystems, Kluwer Academic Publishers, Boston, pp. 213–234.Google Scholar
  64. Posch, M., De Smet, P. A. M., Hettelingh, J.-P. and Downing, R. J. (eds): 1995, ‘Calculation and Mapping of Critical Thresholds in Europe. Status Report 1995’, Coordination Center for Effects, Rep. 259101004, Natl. Inst. Public Health and the Environ., Bilthoven, The Netherlands, iv + 198 pp. (available at Scholar
  65. Posch, M., De Smet, P. A. M., Hettelingh, J.-P. and Downing, R. J. (eds.): 1999, ‘Calculation and Mapping of Critical Thresholds in Europe. Status Report 1999’, Coordination Center for Effects, Rep. 259101009, Natl. Inst. Public Health and the Environ., Bilthoven, The Netherlands, iv + 165 pp. (available at Scholar
  66. Posch, M., Hettelingh, J.-P., De Smet, P. A. M. and Downing, R. J. (eds): 1997, ‘Calculation and Mapping of Critical Thresholds in Europe. Status Report 1997’. Coordination Center for Effects, Rep. 259101007, Natl. Inst. Public Health and the Environ., Bilthoven, The Netherlands, iv+163 pp. (available at Scholar
  67. Reuss, J. O. and Johnson, D. W.: 1986: Acid Deposition and the Acidification of Soils and Waters, Ecological Studies 59, Springer Verlag, New York.Google Scholar
  68. RIVM/UNEP: 1997, ‘The Future of the Global Environment: A Model-Based Analysis Supporting UNEP’s First Global Environment Outlook’, Rep. RIVM 402001007 and UNEP/DEIA/TR.97-1, Natl. Inst. Public Health and the Environ., Bilthoven, The Netherlands, Div. Environ. Inf. Assessment, United Nations Environment Programme, Nairobi, Kenya, 154 pp.Google Scholar
  69. Rodhe, H., Cowling, E., Galbally, I. E., Galloway, J. N. and Herrera, R.: 1988, ‘Acidification and Regional Air Pollution in the Tropics’, in H. Rodhe and R. Herrera (eds), Acidification in Tropical Countries, Scope 36, Wiley and Sons, New York.Google Scholar
  70. Soveri, J. and Peltonen, K.: 1995, ‘Evaluation of the changes in regional wintertime deposition in Finland during 1976-1993’, Water, Air, Soil, Pollut. 85, 2191–2197.CrossRefGoogle Scholar
  71. Stevenson, D. S., Johnson, C. E., Collins, W. J. and Derwent, R. G.: 1998, ‘Three-Dimensional (STOCHEM) Model Studies of Regional and Global Scale Formation of Tropospheric Oxidants and Acidifying Substances’. Met. Office (APR) Turbulence and Diffusion Note 246, U.K. Meteorological Office, Bracknell, Berkshire.Google Scholar
  72. Sverdrup, H. and De Vries, W.: 1994, ‘Calculating critical loads for acidity with the simple mass balance method’, Water, Air, Soil, Pollut. 72, 143–162.CrossRefGoogle Scholar
  73. Tegen, I. and Fung, I.: 1995, ‘Contribution to the atmospheric mineral load from land surface modification’, J. Geophys. Res. 100, 18707–18726.CrossRefGoogle Scholar
  74. Tuovinen, J. P., Barrett, K. and Styve, H.: 1994, ‘Transboundary Acidifying Pollution in Europe: Calculated Fields and Budgets 1985-93’, Report EMEP/MSC-W 1/94, Norwegian Meteorological Institute, Oslo, Norway.Google Scholar
  75. Umweltbundesamt: 1996, ‘Manual on Methodologies and Criteria for Mapping Critical Levels/Loads and Geographic Areas where they are Exceeded’. UNECE Convention on Long-range Transboundary Air Pollution, Federal Environmental Agency (Umweltbundesamt), Berlin, Germany. (available at Scholar
  76. Van Breemen, N., Burrough, P. A., Velthorst, E. J., Van Dobben, H. F., De Wit, T., Ridder, T. B. and Reijnders, H. F. R.: 1983, ‘Soil acidification from atmospheric ammonium sulphate in forest canopy throughfall’, Nature 299, 548–550.CrossRefGoogle Scholar
  77. Vitousek P.M., Aber, J.D., Howarth, R.W., Likens, G.E., Matson, P.A., Schindler, D.W., Schlesinger, W. H. and Tilman, D. G.: 1997, ‘Human alteration of the global nitrogen cycle: sources and consequences’, Ecol. Applic. 7, 737–750.CrossRefGoogle Scholar
  78. Walton, J., MacCracken, M. and Ghan, S.: 1988, ‘A global-scale Lagrangian trace species model of transport, transformation, and removal processes’, J. Geophys. Res. 93, 8339–8354.CrossRefGoogle Scholar
  79. Warneck, P.: 1988, Chemistry of the Natural Atmosphere, Academic, San Diego, Calif., 757 pp.Google Scholar
  80. Whelpdale, D. M. and Kaiser, M. S.: 1996, ‘Global Acid Deposition Assessment’, Global Atmsopheric Watch Report No. 106, World Meteorological Office, Geneva, Switzerland.Google Scholar
  81. Working Group on Effects: 1999, ‘Trends in Impacts of Long-Range Transboundary Air Pollution’, UNECE Convention on Long-range Transboundary Air Pollution, Institute of Terrestrial Ecology, Monks Wood, U.K., 81 pp.Google Scholar
  82. Working Group on Strategies: 1996, ‘Integrated Assessment of Abatement Strategies for Nitrogen and Volatile Organic Compounds’, Rep. EB.AIR/WG.5/R.64, United Nations Economic Commission for Europe, Geneva, Switzerland.Google Scholar
  83. Zobler, L.: 1986, ‘A world soil file for global modeling’, NASA Tech. Memo. 87802.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • A. F. Bouwman
    • 1
    Email author
  • D. P. Van Vuuren
    • 1
  • R. G. Derwent
    • 2
  • M. Posch
    • 1
  1. 1.National Institute for Public Health and the Environment (RIVM)BilthovenThe Netherlands
  2. 2.Meteorological Office, BracknellBerkshireU.K

Personalised recommendations