Advertisement

Hydrobiologia

, Volume 483, Issue 1–3, pp 209–218 | Cite as

Quantifying the activity and movement of perch in a temperate lake by integrating acoustic telemetry and a geographic information system

  • L. Zamora
  • R. Moreno-Amich
Article

Abstract

The horizontal movement patterns of perch (Perca fluviatilis L.) were studied by means of an automatic positioning system in a small Mediterranean temperate lake in northeastern Spain. Seven perch (247–265 mm in fork length, 243–271 g in weight) were implanted surgically with ultrasonic transmitters (38 mm long, 3.5 g in water) and their positions monitored approximately every 180 s using a radio-linked acoustic positioning (VRAP) system. Fish positions were integrated into a geographic information system database with information on date, time, slope and bottom depth. As a measure of the intensity of movement, the swimming speed was calculated. The Minimum Convex Polygon area was obtained as a measure of the area of activity. The data dispersion was calculated as r2 (the mean squared distance from the center of activity). The tagged perch showed individual variations in activity levels, but all had a circadian pattern, being less active at night (average speed 6.0 cm s−1) than during the day (average speed 10.4 cm s−1). They exhibited two peaks of activity, at sunrise and sunset. Two patterns of movement emerged, the first characterised by movement between the limnetic and the littoral zones, the second restricted to the shoreline. Fish appeared to follow the same path, reducing the area of activity to a limited part of the lake. Also, fish returned to the same place after movements, showing site fidelity but only for a few days. Overall, although perch could be very abundant in open waters (limnetic zone), they demonstrated a high dependence on the littoral zone.

Perca fluviatilis swimming behaviour homing ultrasonic telemetry VRAP system GIS 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anthouard, M. & P. Fontaine, 1998. Adaptation of Perca fluviatilis to self-feeding conditions. Proof of a trophic activity rhythm during day cycle. Ichtyophysiologica-Acta 21: 1-13.Google Scholar
  2. Baras, E., 1998 Selection of residence area and non-reproductive homing in a shoaling freshwater teleost, the barbel Barbus barbus (L.). In Lagardère, J. P., M. L. Bégout Anras & G. Claireaux (eds), Advances in Invertebrates and Fish Telemetry: Proceedings of the Second Conference on Fish Telemetry in Europe. La Rochelle, France. Hydrobiologia 371/372: 47-58Google Scholar
  3. Baras, E.& D. Jeandrain, 1998. Evaluation of surgery procedures for tagging eel Anguilla anguilla (L.) with biotelemetry transmitters. In Lagardère, J. P., M. L. Bégout Anras & G. Claireaux (eds), Advances in Invertebrates and Fish Telemetry: Proceedings of the Second Conference on Fish Telemetry in Europe. La Rochelle, France. Hydrobiologia 371/372: 107-111.Google Scholar
  4. Bergman, E., 1990. Distributions and competitive abilities of perch Perca fluviatilis and ruffe Gymnocephalus cernuus along environmental gradients. Ph.D. thesis. Department of Ecology and Limnology, Lund University, Sweden.Google Scholar
  5. Begout Anras, M. L., P. M. Cooley, R. A. Bodaly, L. Anras & R. J. P. Fudge, 1999. Movement and habitat use by Lake Whitefish during spawning in a Boreal Lake: integrating acoustic telemetry and geographic information systems. Trans. am. Fish. Soc. 128: 939-952.Google Scholar
  6. Bourke, P., P. Magnan & M. A. Rodríguez, 1996. Diel locomotor activity of brook charr, as determined by radiotelemetry. J. Fish Biol. 49: 1174-1185.Google Scholar
  7. Casamitjana, X. & E. Roget, 1993. Resuspension of sediment by focused groundwater in Lake Banyoles. Limnol. Oceanogr. 38: 643-656.Google Scholar
  8. Craig, J., 1977. Seasonal changes in the day and night activity of adult perch, Perca fluviatilis L. J. Fish Biol. 11: 161-166.Google Scholar
  9. Craig, J., 1987. The Biology of Perch and Related Fish. Croom Helm, London, 333 pp.Google Scholar
  10. Donnelly, R. E., J. M. Caffrey & D. M. Tierney, 1998. Movements of a bream (Abramis brama (L.)), rudd×bream hybrid, tench (Tinca tinca (L.)) and pike (Esox lucius (L.)) in a Irish canal habitat. In Lagardère, J. P., M. L. Bégout Anras & G. Claireaux (eds), Advances in Invertebrates and Fish Telemetry: Proceedings of the Second Conference on Fish Telemetry in Europe. La Rochelle, France. Hydrobiologia 371/372: 305-308.Google Scholar
  11. Eklöv, P., 1997. Effects of habitat complexity and prey abundance on the spatial and temporal distribuitons of perch (Perca fluviatilis) and pike (Esox lucius). Can. J. Fish. aquat. Sci./J. Can. Sci. Halieut. Aquat. 54: 1520-1531.Google Scholar
  12. Engas, A., S. Løkkeborg & J. T. Ovredal, 1996. Natural and fishing-gear-induced behaviour of tagged fish, studied by means of stationary positioning system. In Baras, E. & J. C. Phillipart (eds), Underwater Biotelemetry: Proceedings of the First Conference and Workshop on Fish Telemetry in Europe. Liège, University of Liège: 203-211.Google Scholar
  13. Eriksson, L. O., 1978. A laboratory study of diel and annual activity rythms and vertical distribution in the perch, Perca fluviatilis, at the Artic circle. Envir. Biol. Fishes 3: 301-307.Google Scholar
  14. Flesch, A., G. Masson & J.-C. Moreteau, 1994. Comparaisons de trois méthodes d'échantillonnage utilisées dans l'étude de la répartition de la perche (Perca fluviatilis) dans un lac-réservoir. Cybium 18: 39-56.Google Scholar
  15. Garcia-Gil, L. J., X. Casamitjana & C. A. Abellà, 1996. Comparative study of two meromictic basins of Lake Banyoles (Spain) with sulphur phototrophic bacteria. Hydrobiologia 319: 203-211.Google Scholar
  16. García-Berthou, E., 1994. Feeding ecology of the fish community in Lake Banyoles. Ph.D. thesis. University of Girona, Girona (Spain): 288 pp. (in Catalan).Google Scholar
  17. García-Berthou, E. & R. Moreno-Amich, 2000. Introduction of exotic fish into a Mediterranean lake over a 90-year period. Arch. Hydrobiol. 149: 271-284.Google Scholar
  18. Godel, J. & R. Eckmann, 1999. Activity patterns, movements and home-ranges of adult perch (Perca fluviatilis L.) during summer. Proceedings of the Annual Meeting of the American Fisheries Socitety.Google Scholar
  19. Hert, E., 1992. Homing and home-site fidelity in rock-dwelling cichlids (Pisces: Teleostei) of Lake Malawi, Africa. Envir. Biol. Fishes 33: 229-237.Google Scholar
  20. Hodgson, J. R., D. E. Schindler & X. He, 1998. Homing tendency of three piscivorous fishes in a North temperate lake. Trans. am. Fish. Soc. 127: 1071-1081.Google Scholar
  21. Hooge P. N., W. M. Eichenlaub, & E. K. Solomon. 2000. Using GIS to analyze animal movements in the marine environment. USGS: GIS Tools. Online <http://www.absc.usgs.gov/glba/gistools/index.htm> Accessed Jan. 2001.Google Scholar
  22. Huusko, A., O. Vuorimies & T. Sutela, 1996. Temperature and light mediated predation by perch on vendace larvae. J. Fish Biol. 49: 441-447.Google Scholar
  23. Imbrock, F., A. Appenzeller & R. Eckmann, 1996. Diel and seasonal distribution of perch in Lake Constance: a hydroacoustic study and in situ observations. J. Fish Biol. 49: 1-13.Google Scholar
  24. Jacobsen, L.S. Berg, 1998. Diel variation in habitat use by planktivores in field enclosure experiments: the effect of submerged macrophytes and predation. J. Fish Biol. 53: 1207-1219.Google Scholar
  25. Jaerv, L., 2000. Migrations of the perch (Perca fluviatilis L.) in the coastal waters of western Estonia. Proceedings of the Estonian Academy of Sciences, Biol. Ecol. 49: 270-276.Google Scholar
  26. Jamet, J. L. & N. Lair, 1991. An example of diel feeding cycle of two percids, perch (Perca fluviatilis) and ruffe (Gymnocephalus cernuus) in eutrophic Lake Aydat (France). Ann. Sci. Nat. Zool. Biol. Anim. 12: 99-105.Google Scholar
  27. Jamet, J. L., 1994. Feeding activity of adult roach (Rutilus rutilus (L.)), perch (Perca fluviatilis L.) and ruffe (Gymnocephalus cernuus (L.)) in eutrophic Lake Aydat (France). Aquat. Sci. 56: 1015-1621.Google Scholar
  28. Kerr, S. R., 1982. Estimating the energy budgets of actively predatory fishes. Can. J. Fish. aquat. Sci./J. Can. Sci. Halieut. Aquat. 39: 371-379.Google Scholar
  29. Lagardère, J. P., J. J. Ducamp, L. Favre, J. Mosneron Dupin & M. Spèrandio, 1990. A method for the quantitative evaluation of fish movements in salt ponds by acoustic telemetry. J. exp. mar. Biol. Ecol. 141: 221-236.Google Scholar
  30. Minns, C. K., 1995. Allometry of home range size in lake and river fishes. Can. J. Fish. aquat. Sci./J. Can. Sci. Halieut. Aquat. 52: 1499-1508.Google Scholar
  31. Miracle, M. R., 1976. Distribución en el espacio y en el tiempo de las especies del zooplancton del lago de Banyoles. [5]: 1-270. ICONA. Monografías.Google Scholar
  32. Moreno-Amich, R. & E. García-Berthou, 1989. A new bathymetric map based on echo-sounding and morphometrical characterization of the Lake of Banyoles (NE-Spain). Hydrobiologia 185: 83-90.Google Scholar
  33. Neuman, E., G. Thoresson & O. Sanström, 1996. Swimming activity of perch, Perca fluviatilis, in relation to temperature, day-length and consumption. Ann. Zool. Fen. 33: 669-678.Google Scholar
  34. O'Dor, R. K., Y. Aandradre, D. M. Webber, W. H. H. Sauer, M. J. Roberts, M. J. Smale & F. M. Voegeli, 1998. Applications and performance of Radio-Acoustic Positioning and Telemetry (RAPT) systems. In Lagardère, J. P., M. L. Bégout Anras & G. Claireaux (eds), Advances in Invertebrates and Fish Telemetry: Proceedings of the Second Conference on Fish Telemetry in Europe. La Rochelle, France. Hydrobiologia 371/372: 1-8.Google Scholar
  35. O'Dor, R. K., Y. Andrade & J. Tremblay, 1999. High resolution post-analysis of lobster tracks from radioacoustic positioning and telemetry (RAPT). Online <http://www.raptnet.org/isob99m7.html> Accessed Dec. 1999.Google Scholar
  36. Otis, K. J. & J. J. Weber, 1982. Movement of carp in the Lake Winnebago system determined by radio telemetry. Technical Bulletin 134: 1-16. Department of Natural Resources. Madison, Wisconsin.Google Scholar
  37. Parker, S. J., 1995. Homing ability and home range of yellow-phase American eels in a tidally dominated estuary. J. mar. biol. Assoc. U.K. 75: 127-140.Google Scholar
  38. Planas, D., 1973. Composición, ciclo y productividad del fitoplancton del lago de Banyoles. Oecol. Aquat. 1: 1-106.Google Scholar
  39. Prat, N.& M. Rieradevall, 1995. Life cycle and production of Chironomidae (Diptera) from Lake Banyoles (NE Spain). Freshwat. Biol. 33: 511-524.Google Scholar
  40. Rossier, O., E. Castella & J. B. Lachavanne, 1996. Influence of submerged aquatic vegetation on size class distribution of perch (Perca fluviatilis) and roach (Rutilus rutilus) in the littoral zone of Lake Geneva (Switzerland). Aqua. Sci. 58: 1-14.Google Scholar
  41. Sauer, W. H., M. J. Roberts, M. R. Lipinski, M. J. Smale, R. T. Hanlon, D. M. Webber & R. K. O'Dor, 1997. Choreography of the Squid's ‘Nuptial Dance’. Biol. Bull. 203-207.Google Scholar
  42. Savitz, J., P. A. Fish & R. Weszely, 1983. Habitat utilization and movement of fish as determined by radio-telemetry. J. Freshwat. Ecol. 2: 165-174.Google Scholar
  43. Skajaa, K., A. Fernö, S. Lokkeborg & E. K. Haugland, 1998. Basic movement pattern and chemo-oriented search towards baited pots in edible crab (Cancer pagurus L.). In Lagardère, J. P.,M. L. Bégout Anras & G. Claireaux (eds), Advances in Invertebrates and Fish Telemetry: Proceedings of the Second Conference on Fish Telemetry in Europe. La Rochelle, France. Hydrobiologia 371/372: 143-153.Google Scholar
  44. Voegeli, F. A. & D. G. Pincock, 1996. Overview of underwater acoustics as it applies to telemetry. In Baras, E. & J. C. Phillipart (eds), Underwater Biotelemetry: Proceedings of the First Conference and Workshop on Fish Telemetry in Europe. Liège, University of Liège. 23-30. 1996.Google Scholar
  45. Voegeli, F. A., G. L. Lacroix & J. M. Anderson, 1998. Development of miniature pingers for tracking Atlantic salmon smolts at sea. Hydrobiologia 35-46.Google Scholar
  46. Wooton, R. J., 1990. Ecology of Teleost Fishes. Chapman & Hall, London, 404 pp.Google Scholar
  47. Yoshiyama, R.M., K. B. Gaylord, M. T. Philippart, T. R. Moore, J. R. Jordan, C. C. Coon, L. L. Schalk, C. J. Valpey & I. Tosques, 1992. Homing behavior and site fidelity in intertidal sculpins (Pisces:Cottidae). J. exp. mar. Biol. Ecol. 160: 115-130.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • L. Zamora
    • 1
  • R. Moreno-Amich
    • 1
  1. 1.Institute of Aquatic Ecology and Department of Environmental SciencesUniversity of Girona, Facultat de CiènciesGironaSpain

Personalised recommendations