Hydrobiologia

, Volume 484, Issue 1–3, pp 21–31 | Cite as

The importance of silicon for marine production*

  • Svein Kristiansen
  • Espen Edward Hoell
Article

Abstract

A review of silicon, with emphasis on its forms, uptake, dissolution and role in marine primary production, is given. The importance of silicon in marine food webs is discussed, as well as the concentrations of silicon in various areas and the importance of changing N:Si:P ratios. The methodology for measuring silicate transformations has recently been improved by the introduction of the highly enriched 32Si isotope. Results from uptake experiments using 32Si in nutrient rich coastal water and in open ocean are presented. The uptake kinetic experiments showed that the silicate uptake usually is unsaturated. We propose that closer attention in the future should be paid to the importance of balanced nutrient composition as well as nutrient supply dynamics for the development of eutrophication versus efficient trophic transfer and fish production in nutrient enriched systems. Close attention should also be paid to the mechanisms that reduce the inputs of silicate to coastal waters.

Silicate diatom review eutrophication nutrient ratios 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, D.M., 1994. Red tides. Scientific American 271: 52-58.Google Scholar
  2. Ban, S., C. Burns, J. Castel, Y. Chaudron, E. Christou, R. Escribano, S. F. Umani, S. Gasparini, F. G. Ruiz, M. Hoffmeyer, A. Ianora, H.-K. Kang, M. Laabir, A. Lacoste, A. Miralto, X. Ning, S. Poulet, V. Rodriguez, J. Runge, J. Shi, M. Starr, S.-i. Uye & Y. Wang, 1997. The paradox of diatom-copepod interactions. Mar. Ecol. Prog. Ser. 157: 287-293.Google Scholar
  3. Bidle, K. D. & F. Azam, 1999. Accelerated dissolution of diatom silica by marine bacterial assemblages. Nature 397: 508-512.Google Scholar
  4. Brzezinski, M. A., 1985. The Si:C:N ratio of marine diatoms: interspecific variability and the effect of some environmental variables. J. Phycol. 21: 347-357.Google Scholar
  5. Brzezinski, M. A. & D. M. Nelson, 1989. Seasonal changes in the silicon cycle within a Gulf Stream warm-core ring. Deep-Sea Res. 36: 1009-1030.Google Scholar
  6. Brzezinski, M. A. & D. M. Nelson, 1995. The annual silica cycle in the Saragasso Sea near Bermuda. Deep Sea Res. 42: 1215-1237.Google Scholar
  7. Brzezinski, M. A. & D. M. Nelson, 1996. Chronic substrate limitation of silicate uptake rates in the western Sargasso Sea. Deep-Sea Res. II 43: 437-453.Google Scholar
  8. Brzezinski, M. A. & D. R. Phillips, 1997. Evaluation of 32Si as a tracer for measuring silica production rates in marine waters. Limnol. Oceanogr. 42: 856-865.Google Scholar
  9. Brzezinski, M. A., D. R. Phillips, F. P. Chavez, G. E. Friederich & R. C. Dugdale, 1997. Silica production in the Monterey, California, upwelling system. Limnol. Oceanogr. 42: 1694-1705.Google Scholar
  10. Carlsson, P. & E. Granéli, 1999. Effects of N:P:Si ratios and zooplankton grazing on phytoplankton communities in the northern Adriatic Sea. II. Phytoplankton species composition. Aquat. Microb. Ecol. 18: 55-65.Google Scholar
  11. Cederwall, H. & R. Elmgren, 1990. Biological effects of eutrophication in the Baltic Sea, particularly the coastal zone. Ambio 19: 109-112.Google Scholar
  12. Cloern, J. E., 1996. Phytoplankton bloom dynamics in coastal ecosystems: A review with some general lessons from sustained investigations of San Francisco Bay, California. Rev. Geophys. 34: 127-168.Google Scholar
  13. Conley, D. J., 1997. Riverine contribution of biogenic silica to the oceanic silica budget. Limnol. Oceanogr. 42: 774-777.Google Scholar
  14. Conley, D. J., C. L. Schelske & E. F. Stoermer, 1993. Modification of the biogeochemical cycle of silica with eutrophication. Mar. Ecol. Prog. Ser. 101: 179-192.Google Scholar
  15. Dahl, E. & K. Tangen, 1993. 25 years experience with Gyrodinium aureolum in Norwegian waters. In Smayda, T. J. & Y. Shimizu (eds), Toxic Phytoplankton Blooms in the Sea. Elsevier, Amsterdam: 15-21.Google Scholar
  16. Dahl, E., O. Lindahl, E. Paasche & J. Throndsen, 1989. The Chrysochromulina polylepis bloom in Scandinavian waters during spring 1988. In Cosper, E.M., V. M. Bricelj & E. J. Carpenter (eds), Novel Phytoplankton Blooms. Springer-Verlag, Berlin: 383-405.Google Scholar
  17. Del Amo, Y. & M. A. Brzezinski, 1999. The chemical form of dissolved Si taken up by marine diatoms. J. Phycol. 35: 1162-1170.Google Scholar
  18. Doering, P. H., C. A. Oviatt, L. L. Beatty, V. F. Banzon, R. Rice, S. P. Kelly, B. K. Sullivan & J. B. Frithsen, 1989. Structure and 30 function in a model coastal ecosystem: Silicon, the benthos and eutrophication. Mar. Ecol. Prog. Ser. 52: 287-299.Google Scholar
  19. Duarte, C. M., S. Agustí, J. M. Gasol, D. Vaqué & E. Vazquez-Dominguez, 2000. Effect of nutrient supply on the biomass structure of planktonic communities: an experimental test on a Mediterranean coastal community. Mar. Ecol. Prog. Ser. 206: 87-95.Google Scholar
  20. Dugdale, R. C. & F. P. Wilkerson, 1998. Silicate regulation of new production in the equatorial Pacific upwelling. Nature 391: 270-273.Google Scholar
  21. Dugdale, R. C., F. P. Wilkerson & H. J. Minas, 1995. The role of a silicate pump in driving new production. Deep Sea Res. 42: 697-719.Google Scholar
  22. Egge, J. K. & D. L. Aksnes, 1992. Silicate as regulating nutrient in phytoplankton competition. Mar. Ecol. Prog. Ser. 83: 281-289.Google Scholar
  23. Egge, J. K. & A. Jacobsen, 1997. Influence of silicate on particulate carbon production in phytoplankton. Mar. Ecol. Prog. Ser. 147: 219-230.Google Scholar
  24. Elmgren, R., 1989. Man's impact on the ecosystem of the Baltic Sea: Energy flows today and at the turn of the century. Ambio 18: 326-332.Google Scholar
  25. Falkowski, P. G. & J. A. Raven, 1997. Aquatic Photosynthesis. Blackwell, Malden, 375 pp.Google Scholar
  26. Gjøsæter, J., K. Lekve, N. C. Stenseth, H. P. Leinaas, H. Christie, E. Dahl, D. S. Danielssen, B. Edvardsen, F. Olsgard, E. Oug & E. Paasche, 2000. A long-term perspective on the Chrysochromulina bloom on the Norwegian Skagerrak coast 1988: a catastrophe or an innocent incident? Mar. Ecol. Prog. Ser. 207: 201-218.Google Scholar
  27. Gran, H. H., 1912. Pelagic plant life. In Murray, J. & J. Hjort (eds), The Depths of the Ocean. MacMillian, London: 307-386.Google Scholar
  28. Gray, J. S., 1992. Eutrophication in the sea. In Colombo, G., I. Ferrari, V. U. Ceccherellii & R. Rossi (eds), Marine Eutrophication and Population Dynamics. Olsen and Olsen, Fredensborg: 3-15.Google Scholar
  29. Hallegraeff, G. M., 1993. A review of harmful algal blooms and their apparent global increase. Phycologia 32: 79-99.Google Scholar
  30. Hallegraeff, G. M., D. M. Anderson & A. D. Cembella, 1995. Manual on harmful marine microalgae. UNESCO, Paris, 551 pp.Google Scholar
  31. Harris, R. P., 1996. Feeding ecology of Calanus. Ophelia 44: 85-109.Google Scholar
  32. Harrison, W. G., 1993. Nutrient recycling in production experiments. ICES mar. Sci. Symp. 197: 149-158.Google Scholar
  33. Hasle, G. R. & T. J. Smayda, 1960. The annual phytoplankton cycle at Drøbak, Oslofjord. Nytt Mag. Bot. 8: 53-75.Google Scholar
  34. Heilmann, J. P., K. Richardson & G. Ærtebjerg, 1994. Annual distribution and activity of phytoplankton in the Skagerrak/Kattegat frontal region. Mar. Ecol. Prog. Ser. 112: 213-223.Google Scholar
  35. Hoagland, K. D., J. R. Rosowski, M. R. Gretz & S. C. Roemer, 1993. Diatom extracellular polymeric substances: function, fine structure, chemistry, and physiology. J. Phycol. 29: 537-566.Google Scholar
  36. Humborg, C., V. Ittekkot, A. Cociasu & B. v. Bodungen, 1997. Effect of Danube River dam on Black Sea biogeochemistry and ecosystem structure. Nature 386: 385-388.Google Scholar
  37. Humborg, C., D. J. Conley, L. Rahm, F. Wulff, A. Cociasu & V. Ittekkot, 2000. Silicon retention in river basins: Far-reaching effects on biogeochemistry and aquatic food webs in coastal marine environments. Ambio 29: 45-50.Google Scholar
  38. Jackson, G. A., 1990. A model of the formation of marine algal flocs by physical coagulation processes. Deep Sea Res. 37: 1197-1211.Google Scholar
  39. Jickells, T. D., 1998. Nutrient biogeochemistry of the coastal zone. Science 281: 217-222.Google Scholar
  40. Jonasdottir, S. H., T. Kiørboe, K. W. Tang, M. St. John, A. W. Visser, E. Saiz & H. G. Dam, 1998. Role of diatoms in copepod production: good, harmless or toxic? Mar. Ecol. Prog. Ser. 172: 305-308.Google Scholar
  41. Justić, D., N. N. Rabalais & R. E. Turner, 1995. Stoichiometric nutrient balance and origin of coastal eutrophication. Mar. Pollut. Bull. 30: 41-46.Google Scholar
  42. Kamatani, A., 1982. Dissolution rates of silica from diatoms decomposing at various temperatures. Mar. Biol. 68: 91-96.Google Scholar
  43. Kang, H.-K. & S. A. Poulet, 2000. Reproductive success in Calanus helgolandicus as a function of diet and egg cannibalism. Mar. Ecol. Prog. Ser. 201: 241-250.Google Scholar
  44. Kiørboe, T. & T. G. Nielsen, 1994. Regulation of zooplankton biomass and production in a temperate, coastal ecosystem. 1. Copepods. Limnol. Oceanogr. 39: 493-507.Google Scholar
  45. Kleppel, G. S. & C. A. Burkart, 1995. Egg production and the nutritional environment of Acartia tonsa: the role of food quality in copepod nutrition. ICES J. mar. Sci. 52: 297-304.Google Scholar
  46. Kristiansen, S., 1998. Impact of increased river discharge on the phytoplankton community in the outer Oslofjord, Norway. Hydrobiologia 363: 169-177.Google Scholar
  47. Kristiansen, S., T. Farbrot & L.-J. Naustvoll, 2000. Production of biogenic silica by spring diatoms. Limnol. Oceanogr. 45: 472-478.Google Scholar
  48. Legendre, L. & F. Rassoulzadegan, 1995. Plankton and nutrient dynamics in marine waters. Ophelia 41: 153-172.Google Scholar
  49. Levitus, S., M. E. Conkright, J. L. Reid, R. G. Najjar & A. Mantyla, 1993. Distribution of nitrate, phosphate and silicate in the world oceans. Progr. Oceanogr. 31: 245-273.Google Scholar
  50. Lewin, J. C., 1962. Silicification. In Lewin, R. A. (ed.), Physiology and Biochemistry of Algae. Academic, New York: 445-455.Google Scholar
  51. Martin, J. H. & S. E. Fitzwater, 1988. Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic. Nature 331: 341-343.Google Scholar
  52. Mayer, L. M. & S. P. Gloss, 1980. Buffering of silica and phosphate in a turbid river. Limnol. Oceanogr. 25: 12-22.Google Scholar
  53. Menzel, D. W., E. M. Hulburt & J. H. Ryther, 1963. The effects of enriching Sargasso Sea water on the production and species composition of the phytoplankton. Deep Sea Res. 10: 209-219.Google Scholar
  54. Miller, C. B., 1993. Pelagic production processes in the subarctic Pacific. Progr. Oceanogr. 32: 1-15.Google Scholar
  55. Milliman, J. D., 1997. Blessed dams or damned dams? Nature 386: 325-327.Google Scholar
  56. Miralto, A., G. Barone, G. Romano, S. A. Poulet, A. Ianora, G. L. Russo, I. Buttino, G. Mazzarella, M. Laabir, M. Cabrini & M. G. Glacobbe, 1999. The insidious effect of diatoms on copepod reproduction. Nature 402: 173-176.Google Scholar
  57. Nelson, D. M. & Q. Dortch, 1996. Silicic acid depletion and silicon limitation in the plume of the Mississippi River: evidence from kinetic studies in spring and summer. Mar. Ecol. Prog. Ser. 136: 163-178.Google Scholar
  58. Nelson, D. M. & J. J. Goering, 1977. A stable isotope tracer method to measure silicate uptake by marine phytoplankton. Anal. Biochem. 78: 139-147.Google Scholar
  59. Nelson, D. M. & W. O. Smith, Jr., 1991. Sverdrup revisited: Critical depths, maximum chlorophyll levels, and the control of Southern Ocean productivity by the irradiance-mixing regime. Limnol. Oceanogr. 36: 1650-1662.Google Scholar
  60. Nelson, D. M., J. J. Goering, S. S. Kilham & R. R. L. Guillard, 1976. Kinetics of silicic acid uptake and rates of silica dissolution in the marine diatom Thalassiosira pseudonana. J. Phycol. 12: 246-252.Google Scholar
  61. Nelson, D. M., P. Tréguer, M. A. Brzezinski, A. Leynaert & B. Quéguiner, 1995. Production and dissolution of biogenic silica in the ocean: Revised global estimates, comparison with regional data and relationship to biogenic sedimentation. Global Biogeochem. Cycle 9: 359-372.Google Scholar
  62. Nielsen, T. G. & T. Kiørboe, 1994. Regulation of zooplankton biomass and production in a temperate, coastal ecosystem. 2. Ciliates. Limnol. Oceanogr. 39: 508-519.Google Scholar
  63. Nixon, S. W., 1995. Coastal marine eutrophication: A definition, social causes, and future concerns. Ophelia 41: 199-219.Google Scholar
  64. Officer, C. B. & J. H. Ryther, 1980. The possible importance of silicon in marine eutrophication. Mar. Ecol. Prog. Ser. 3: 83-91.Google Scholar
  65. Paasche, E., 1973. Silicon and the ecology of marine plankton diatoms. II. Silicate-uptake kinetics in five diatom species. Mar. Biol. 19: 262-269.Google Scholar
  66. Paasche, E., 1975. Growth of the plankton diatom Thalassiosira nordenskioeldii Cleve at low silicate concentrations. J. exp. mar. Biol. Ecol. 18: 173-183.Google Scholar
  67. Paasche, E., 1980a. Silicon. In Morris, I. (ed.), The Physiological Ecology of Phytoplankton. Blackwell, Oxford: 259-284.Google Scholar
  68. Paasche, E., 1980b. Silicon content of five marine plankton diatom species measured with a rapid filter method. Limnol. Oceanogr. 25: 474-480.Google Scholar
  69. Paasche, E. & I. Østergren, 1980. The annual cycle of plankton diatom growth and silica production in the inner Oslofjord. Limnol. Oceanogr. 25: 481-494.Google Scholar
  70. Parsons, T. R., P. J. Harrison & R. Waters, 1978. An experimental simulation of changes in diatom and flagellate blooms. J. exp. mar. Biol. Ecol. 32: 285-294.Google Scholar
  71. Pierce, R. W. & J. T. Turner, 1992. Ecology of planktonic ciliates in marine food webs. Rev. Aquat. Sci. 6: 139-181.Google Scholar
  72. Probyn, T. A., 1992. The inorganic nitrogen nutrition of phytoplankton in the southern Benguela: New production, phytoplankton size and implications for pelagic foodwebs. S. Afr. J. mar. Sci. 12: 411-420.Google Scholar
  73. Radach, G., J. Berg & E. Hagmeier, 1990. Long-term changes of the annual cycles of meteorological, hydrographic, nutrient and phytoplankton time series at Helgoland and at LV ELBE 1 in the German Bight. Cont. Shelf Res 10: 305-328.Google Scholar
  74. Ragueneau, O. & P. Tréguer, 1994. Determination of biogenic silica in coastal waters: applicability and limits of the alkaline digestion method. Mar. Chem. 45: 43-51.Google Scholar
  75. Redfield, A. C., B. H. Ketchum & F. A. Richards, 1963. The influence of organisms on the composition of sea-water. In Hill, M. N. (ed.), The Sea. Vol. 2. Interscience Publishers, New York: 26-77.Google Scholar
  76. Richardson, K. & B. B. Jørgensen, 1996. Eutrophication: Definition, history and effects. In Jørgensen, B. B. & K. Richardson (eds), Eutrophication in Coastal Marine Ecosystems. American Geophysical Union, Washington: 1-19.Google Scholar
  77. Round, F. E., R. M. Crawford & D. G. Mann, 1990. The Diatoms. Biology & Morphology of the Genera. Cambridge University Press, Cambridge, 477 pp.Google Scholar
  78. Ryther, J. H., 1969. Photosynthesis and fish production in the sea. Science 166: 72-76.Google Scholar
  79. Sakshaug, E. & S. Myklestad, 1973. Studies on the phytoplankton ecology of the Trondheimsfjord. III. Dynamics of phytoplankton blooms in relation to environmental factors, bioassay experiments and parameters for the physiological state of the populations. J. exp. mar. Biol. Ecol. 11: 157-188.Google Scholar
  80. Seibold, E. & W. H. Berger, 1982. The Sea Floor. Springer, Berlin, 288 pp.Google Scholar
  81. Shipe, R. F. & M. A. Brzezinski, 1999. A study of Si deposition synchrony in Rhizosolenia (Bacillariophyceae) mats using a novel 32Si autoradiographic method. J. Phycol. 35: 995-1004.Google Scholar
  82. Smayda, T. J., 1980. Phytoplankton species succession. In Morris, I. (ed.), The Physiological Ecology of Phytoplankton. Blackwell, Oxford: 493-570.Google Scholar
  83. Smayda, T. J., 1990. Novel and nuisance phytoplankton blooms in the sea: evidence for a global epidemic. In Granéli, E., B. Sundström, L. Edler & D. M. Anderson (eds), Toxic Marine Phytoplankton. Elsevier, New York: 29-40.Google Scholar
  84. Smayda, T. J., 1997. Harmful algal blooms: Their ecophysiology and general relevance to phytoplankton blooms in the sea. Limnol. Oceanogr. 42: 1137-1153.Google Scholar
  85. Smetacek, V. S., 1986. Impact of freshwater discharge on production and transfer of materials in the marine environment. In Skreslet, S. (ed.), The Role of Freshwater Outflow in Coastal Marine Ecosystems. Springer-Verlag, Berlin: 85-106.Google Scholar
  86. Sommer, U., 1994. Are marine diatoms favoured by high Si:N ratios? Mar. Ecol. Prog. Ser. 115: 309-315.Google Scholar
  87. Sommer, U., H. Stibor, A. Katechakis, F. Sommer & T. Hansen, 2002. Pelagic food web configurations at different levels of nutrient richness and their implications for the ratio fish production: primary production. Hydrobiologia 484/Dev. Hydrobiol. 167: 11-20.Google Scholar
  88. Strickland, J. D. H. & T. R. Parsons, 1972. A practical handbook of seawater analysis. 2nd edn. Bull. Fish. Res. Bd Can. 167: 1-310.Google Scholar
  89. Stumm, W. & J. J. Morgan, 1996. Aquatic Chemistry. 3rd edn. Wiley, New York, 1022 pp.Google Scholar
  90. Svensen, C., J. K. Egge & J. E. Stiansen, 2001. Can silicate and turbulence regulate the vertical flux of biogenic matter? A mesocosm study. Mar. Ecol. Prog. Ser. 217: 67-80.Google Scholar
  91. Thingstad, T. F., E. F. Skjoldal & R. A. Bohne, 1993. Phosphorus cycling and algal-bacterial competition in Sandsfjord, western Norway. Mar. Ecol. Prog. Ser. 99: 239-259.Google Scholar
  92. Tilman, D., S. S. Kilham & P. Kilman, 1982. Phytoplankton community ecology: The role of limiting nutrients. Ann. Rev. Ecol. Syst. 13: 349-372.Google Scholar
  93. Tréguer, P., L. Lindner, A. J. Van Bennekom, A. Leynaert, M. Panouse & G. Jacques, 1991. Production of biogenic silica in the Weddell-Scotia Seas measured with 32Si. Limnol. Oceanogr. 36: 1217-1227.Google Scholar
  94. Tréguer, P., D. M. Nelson, A. J. Van Bennekom, D. J. DeMaster, A. Leynaert & B. Quéguiner, 1995. The silica balance in the world ocean: A reestimate. Science 268: 375-379.Google Scholar
  95. Turner, R. E. & N. N. Rabalais, 1994. Coastal eutrophication near the Mississippi river delta. Nature 368: 619-621.Google Scholar
  96. Van Bennekom, A. J., E. Krijgsman-van Hartingsveld, G. C. M. van der Veer & H. F. J. van Voorst, 1974. The seasonal cycles of reactive silicate and suspended diatoms in the Dutch Wadden Sea. Neth. J. Sea Res. 8: 174-207.Google Scholar
  97. Van Bennekom, A. J. & W. Salomons, 1980. Pathways of nutrients and organic matter from land to ocean through rivers. In Martin, J.-M., J. D. Burton & D. Eisma (eds), River Inputs to Ocean Systems. UNEP/UNESCO: 33-56.Google Scholar
  98. Vollenweider, R. A., 1976. Advances in defining critical loading levels for phosphorus in lake eutrophication. Mem. 1st. Ital. Idrobiol. 33: 53-84.Google Scholar
  99. Wahby, S. D. & N. F. Bishara, 1980. The effect of the river Nile on Mediterranean water, before and after the construction of the High Dam at Aswan. In Martin, J.-M., J. D. Burton & D. Eisma (eds), River Inputs to Ocean Systems. UNEP/UNESCO: 311-315.Google Scholar
  100. Wasmund, N., G. Nausch & W. Matthäus, 1998. Phytoplankton spring blooms in the southern Baltic Sea-spatio-temporal development and long-term trends. J. Plankton Res. 20: 1099-1117.Google Scholar
  101. Werner, D., 1977. Silicate metabolism. In Werner, D. (ed.), The Biology of Diatoms. University of California Press, Berkeley: 110-149.Google Scholar
  102. Wulff, F., A. Stigebrandt & L. Rahm, 1990. Nutrient dynamics of the Baltic Sea. Ambio 19: 126-133.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Svein Kristiansen
    • 1
  • Espen Edward Hoell
  1. 1.NFH, BreivikaUniversity of TromsøTromsøNorway

Personalised recommendations