Biodiversity & Conservation

, Volume 11, Issue 12, pp 2143–2165 | Cite as

Modeling spatial distribution of amphibian populations: a GIS approach based on habitat matrix permeability

  • Nicolas Ray
  • Anthony Lehmann
  • Pierre Joly


Predictions of occurrence of two amphibian species, the common toad and the alpine newt, were made using information on land use surrounding breeding ponds. A geographical information system (GIS) was used to compile a landuse map, from which permeability estimates (friction) were derived. Potential migration zones based on friction and maximum migration distance were then modeled. Contacts between several migration zones suggest the potential for migration between ponds by adult individuals. The ability of the migration zones to enhance predictions of species occurrence was tested using generalized additive models (GAMs), and several landscape variables were selected as determinants of amphibian presence. The area of a migration zone and the number of ponds within that zone were positively related to both toad and newt presence, suggesting the importance of buffer habitats around each pond in amphibian conservation. Toad presence declined with cultivated field area and newt presence declined with vineyard area, suggesting the negative effect of agricultural activity on amphibians. The friction-based modeling approach improved the prediction of toad presence when compared to a more classical analysis of habitat composition within a circular zone centered on the focal pond. Prediction of newt presence was, however, less accurate than prediction of toad presence. Despite its exploratory nature and the subjectivity of permeability estimates, this study shows the usefulness of GIS in the functional analysis of a landscape, with potential applications in biological conservation. It also highlights the need for improving our knowledge of habitat use by animals.

Amphibian Bufo bufo Dispersal model Generalized additive model Geographical information system Least-cost path Migration modeling Permeability Switzerland Triturus alpestris 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andrewartha H.G. and Birch L.C. 1954. The Distribution and Abundance of Animals. University of Chicago Press, Chicago, Illinois.Google Scholar
  2. Ashley E.P. and Robinson J.T. 1996. Road mortality of amphibians, reptiles and other wildlife on the long point causeway, Lake Erie, Ontario. Canadian Field-Naturalist 110: 403–412.Google Scholar
  3. Auderset D., Detraz-Merroz J., Durand P., Juge R., Lachavanne J.-B., Lods-Crozet B., Noetzlin A., Oertli B., Oïhénart C. and Rossier O. 1992. Les plans d'eau du Canton de Genève. Partie I. Inventaire et Qualification. Département de l'Intérieur et de l'Agriculture, Canton de Genève, Geneva, Switzerland.Google Scholar
  4. Berthoud G. and Antoniazza V. 1998. Protection des batraciens. Estimation des populations utilisant les passages aménagés sous la route Yverdon-Yvonand. Rapport de gestion no 52. Suivi scientifique. Gestion des zones naturelles de la rive sud du lac de Neuchâtel.Google Scholar
  5. Blaustein A.R., Wake D.B. and Sousa W.P. 1994. Amphibian declines: judging stability, persistence, and susceptibility of populations to local and global extinctions. Conservation Biology 8: 60–71.Google Scholar
  6. Brooker L., Brooker M. and Cale P. 1999. Animal dispersal in fragmented habitat: measuring habitat connectivity, corridor use, and dispersal mortality. Conservation Ecology (online) 3(1): 1–22.Google Scholar
  7. Brown J.H. and Kodric-Brown A. 1977. Turnover rates in insular biogeography: effect on immigration on extinction. Ecology 58: 445–449.Google Scholar
  8. Chambers J.M. and Hastie T.J. 1993. Statistical Models in Computer Science Series. Chapman & Hall, London.Google Scholar
  9. Collischonn W. and Pilar J.V. 2000. A direction dependent least-cost path algorithm for roads and canals. International Journal of Geographic Information Systems 12: 491–508.Google Scholar
  10. Cooke A.S. and Oldham R.S. 1995. Establishment of populations of the common frog, Rana temporaria, and common toad, Bufo bufo, in a newly created reserve following translocation. Herpetological Journal 5: 173–180.Google Scholar
  11. DeMaynadier P.G. and Hunter M.L.J. 1998. Effects of silvicultural edges on the distribution and abundance of amphibians in Maine. Conservation Biology 12: 340–352.Google Scholar
  12. den Boer P.J. 1968. Spreading of risk and stabilisation of animal numbers. Acta Biotheoretica 18: 165–194.Google Scholar
  13. Denton J. and Beebee T.J.C. 1991. Terrestrial ecology of the natterjack toad Bufo calamita. In: Korsos Z. and Kiss I. (eds). Proceedings of the Sixth Ordinary General Meeting. S. E. H., Budapest, pp. 137–141.Google Scholar
  14. Dunning J.B., Brent J.D. and Pulliam H.R. 1992. Ecological process that affect populations in complex landscapes. Oikos 65: 169–174.Google Scholar
  15. Douglas D.H. 1994. Least-cost paths in GIS using an accumulated cost surface and slopelines. Cartographica 31: 37–51.Google Scholar
  16. ESRI 1996. ArcView 3.1 help file. Cost Distance Modeling Discussion. Environmental Systems Research Institute, Redlands, California.Google Scholar
  17. Fahrig L., Pedlar J.H., Pope S.E., Taylor P.D. and Wegner J.F. 1995. Effect of road traffic on amphibian density. Biology Conservation 73: 177–182.Google Scholar
  18. Gibbs J.P. 1998. Distribution of woodland amphibians along a forest fragmentation gradient. Landscape Ecology 13: 263–268.Google Scholar
  19. Griffiths R.A. and Denton J. 1992. Interspecific associations in tadpoles. Animal Behaviour 44: 1153–1157.Google Scholar
  20. Hanski I. and Simberloff D. 1997. The metapopulation approach, its history, conceptual domain, and application to conservation. In: Hanski I. and Gilpin M. (eds). Metapopulation Biology: Ecology, Genetics and Evolution. Academic Press, San Diego, California, pp. 5–26.Google Scholar
  21. Hanski I., Moilanen A. and Gyllenberg M. 1996. Minimum viable metapopulation size. American Naturalist 147: 527–541.Google Scholar
  22. Hastie T.J. and Tibshirani R.J. 1990. Generalized Additive Models. Chapman & Hall, London.Google Scholar
  23. Hecnar S.J. and M'Closkey R.T. 1997. Patterns of nestedness and species association in a pond-dwelling amphibian fauna. Oikos 80: 371–381.Google Scholar
  24. Heusser H. 1968. Die Lebensweise der Erdkröte (Bufo bufo L.). Wanderungen und Sommerquartiere. Revue Suisse de Zoologie 75: 928–982.Google Scholar
  25. Heusser H. 1969. Die Lebensweise der Erdkröte (Bufo bufo L.). Das Orientierungsproblem. Revue Suisse de Zoologie 76: 443–518.Google Scholar
  26. Hitchings S.P. and Beebee T.J.C. 1997. Genetic substructuring as a result of barriers to gene flow in urban Rana temporaria (common frog) populations: implications for biodiversity conservation. Heredity 79: 117–127.Google Scholar
  27. Hooge P.N. 1999. Spatial Tools Extension to ArcView. Version 3.2. Alaska Biological Science Center, U.S. Geological Survey, Anchorage, Alaska.Google Scholar
  28. Johnson C.M., Johnson L.B., Richards C. and Beasley V. 2001. Predicting the occurence of amphibians: an assessment of mutliple-scale models. In: Scott J.M., Heglund P.J., Haufler J.B., Morrison M., Raphael M.G., Wall W.B. and Samson F. (eds). Predicting Species Occurrences: Issues of Accuracy and Scale. Island Press, Covelo, California, pp. 157–171.Google Scholar
  29. Johnston C.A. 1998. Geographic Information Systems in Ecology. 1. Blackwell Science Ltd., Victoria, Australia.Google Scholar
  30. Joly P. and Miaud C. 1989. Fidelity to the breeding site in the alpine newt Triturus alpestris. Behavioural Processes 19: 47–56.Google Scholar
  31. Joly P. and Miaud C. 1993. How does a newt find its pond? The role of chemical cues in migrating newts (Triturus alpestris). Ethology, Ecology and Evolution 5: 447–455.Google Scholar
  32. Joly P., Miaud C., Lehmann A. and Grolet O. 2001. Habitat matrix effects on pond occupancy in newts. Conservation Biology 15: 239–248.Google Scholar
  33. Lehmann A., Overton J.M.C. and Leathwick J.R. 2002. GRASP: Generalized Regression Analysis and Spatial Prediction. Ecological Modelling 157: 187–205.Google Scholar
  34. Lehtinen R.M., Galatowitsch S.M. and Tester J.R. 1999. Consequences of habitat loss and fragmentation for wetland amphibian assemblages. Wetlands 19: 1–12.Google Scholar
  35. Levins R. 1969. Some demographic and genetic consequences of environmental heterogeneity for biological control. Bulletin of the Entomological Society of America 15: 237–240.Google Scholar
  36. Levins R. 1970. Extinctions. In: Gerstenhaber M. (ed). SomeMathematical Problems in Biology. American Mathematical Society, Providence, Rhode Island, pp. 77–107.Google Scholar
  37. Morand A. 1996. Dynamique de la coexistence des espèces: de la théorie des perturbations á la théorie des traits d'histoire de vie. L'exemple du modèle amphibien dans l'espace alluvial du Haut-Rhône, Ph.D. Thesis, Université Claude Bernard Lyon 1, Lyon, France.Google Scholar
  38. Purves H. and Doering C. 1999. Wolves and people: assessing cumulative impacts of human disturbances on wolves in Jasper National Park. In: 1999 ESRI User Conference, San Diego, California.Google Scholar
  39. Reading C.J., Loman J. and Madsen T. 1991. Breeding pond fidelity in the common toad, Bufo bufo. Journal of Zoology 225: 201–211.Google Scholar
  40. Reh W. 1989. Investigations into the influence of roads on the genetic structure of populations of the common frog Rana temporaris. In: Langton T.E.S. (ed). Amphibians and Roads. ACO Polymer Products, London, pp. 101–103.Google Scholar
  41. Schippers P., Verboom J., Knaapen J.P. and Van Apeldoorn R.C. 1996. Dispersal and habitat connectivity in complex heterogeneous landscapes: an analysis with a GIS-based random walk model. Ecography 19: 97–106.Google Scholar
  42. Schlupp I. and Podloucky R. 1994. Changes in breeding site fidelity: a combined study of conservation and behaviour in the common toad Bufo bufo. Biological Conservation 69: 285–291.Google Scholar
  43. Semlitsch R. 1998. Biological delineation of terrestrial buffer zones for pond-breeding salamanders. Conservation Biology 12: 1113–1119.Google Scholar
  44. Shaffer M.L. 1987. Minimum viable populations: coping with uncertainty. In: Soulé M.E. (ed). Viable Populations for Conservation. Cambridge University Press, Cambridge, UK, pp. 69–86.Google Scholar
  45. Sinsch U. 1988. Seasonal changes in the migratory behaviour of the toad Bufo bufo: direction and magnitude of movements. Oecologia 76: 390–398.Google Scholar
  46. Sinsch U. 1989. Migratory behaviour of the common toad (Bufo bufo) and the natterjack toad (Bufo calamita). In: Langton T.E.S. (ed). Amphibians and Roads. ACO Polymer Products, London, pp. 113–125.Google Scholar
  47. Skelly D.K., Werner E.E. and Cortwright S.A. 1999. Long-term distributional dynamics of a Michigan amphibian assemblage. Ecology 80: 2326–2337.Google Scholar
  48. Soulé M.E. 1987. Viable Populations for Conservation. Cambridge University Press, Cambridge, UK.Google Scholar
  49. Taylor P.D., Fahrig L., Henein K. and Merriam G. 1993. Connectivity is a vital element of landscape structure. Oikos 68: 571–573.Google Scholar
  50. Van Gelder J.J., Aarts H.M.J. and Staal H.W.M. 1986. Routes and speed of migrating toads (Bufo bufo L.): a telemetric study. Herpetological Journal 1: 111–114.Google Scholar
  51. Villalba S., Gulinck H., Verbeylen G. and Matthysen E. 1998. Relationship between patch connectivity and the occurrence of the European red squirrel, Sciurus vulgaris, in forest fragments within heterogeneous landscapes. In: Dower J.W. and Bunce R.G.H. (eds). Key Concepts in Landscape Ecology. IALE, Preston, UK, pp. 205–220.Google Scholar
  52. Vos C.C. and Chardon J.P. 1998. Effects of habitat fragmentation and road density on the distribution pattern of the moor frog Rana arvalis. Journal of Applied Ecology 35: 44–56.Google Scholar
  53. Walker R. and Craighead L. 1997. Analysing wildlife movement corridors in Montana using G.I.S. In: 1997 ESRI User Conference, San Diego, California.Google Scholar
  54. Wederkinch E. 1988. Population size, migration barriers, and other features of Rana dalmatina populations near Koge, Zealand, Denmark. Memoranda Societa Fauna Flora Fennica 64: 101–103.Google Scholar
  55. Werdenberg K. and Hainard P. 2000. Les paysages végétaux du canton de Genève, Conservatoire et Jardin botaniques de Genève, Genève, Switzerland.Google Scholar
  56. Wiens J.A. 1997. The emerging role of patchiness in conservation biology. In: Pickett S.T.A., Ostfeld R.S., Shachak M. and Likens G.E. (eds). Enhancing the Ecological Basis of Conservation: Heterogeneity, Ecosystem Function, and Biodiversity. Chapman & Hall, New York, pp. 93–107.Google Scholar
  57. Wiens J.A. 2001. The landscape context of dispersal. In: Clobert J., Danchin E., Dhondt A.A. and Nichols J.D. (eds). Dispersal. Oxford University Press, Oxford, UK, pp. 96–109.Google Scholar
  58. Yee T.W. and Mitchell N.D. 1991. Generalized additive models in plant ecology. Journal of Vegetation Science 2: 587–602.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Nicolas Ray
    • 1
  • Anthony Lehmann
    • 1
  • Pierre Joly
    • 2
  1. 1.Laboratoire d'Ecologie et de Biologie Aquatique (LEBA), Anthropology and Ecology DepartmentUniversity of GenevaSwitzerland
  2. 2.UMR CNRS 5023, Ecologie des Hydrosystèmes FluviauxUniversité Claude Bernard Lyon 1France

Personalised recommendations