Hydrobiologia

, Volume 483, Issue 1–3, pp 31–37 | Cite as

Initial mortality of radio-tagged Atlantic salmon (Salmo salar L.) smolts following release downstream of a hydropower station

Abstract

The fate of radio-tagged hatchery-reared salmon smolts (Salmo salar L.) was investigated in the tailrace of a hydropower station in the Danish River Gudenaa during 2 years. Seventeen and 27 smolts were tagged and released in late May 1996 and during April 1999, respectively. Out of the total of 44 smolts, only two were recorded to leave the river and enter the estuary. In both years of study, electrofishing was used to sample tagged smolts. In 1996, these attempts were unsuccessful, while in 1999, 19 (70% of total) transmitters were retrieved in the stomachs of pikeperch (Stizostedion lucioperca (L.)) and pike (Esox lucius L.), and in grey heron (Ardea cinerea L.) nests. The present study demonstrates that the physical condition of the watershed, with respect to spawning and rearing, may not be the only crucial determining factors of the success of reintroduction of Atlantic salmon. Hydropower plants not only block the free movement of migratory fish, hence preventing the utilisation of spawning and rearing areas, but also form the basis of areas with increased mortality.

telemetry smolt predation Esox lucius Stizostedion lucioperca Ardea cinerea 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aarestrup, K., C. Nielsen & S. S. Madsen, 2000. Relationship between gill Na+, K+-ATPase activity and downstream movement in domesticated and first-generation offspring of wild anadromous brown trout (Salmo trutta). Can. J. Fish. aquat. Sci. 57: 2086-2095.Google Scholar
  2. Collis, K., R. E. Beaty & B. R. Crain, 1995. Changes in catch rate and diet of Northern squawfish associated with release of hatchery-reared juvenile salmonids in a Columbia River reservoir. N. Am. J. Fish. Manage. 15: 6-357.Google Scholar
  3. Dahl, J., 1982. A century of pikeperch in Denmark. EIFAC Tech. Pap. 42 (Suppl. 2): 44-352.Google Scholar
  4. Findlay, C. S., D. G. Bert & L. Zheng, 2000. Effect of introduced piscivores on native minnow communities in Adirondack lakes. Can. J. Fish. aquat. Sci. 57: 570-580.Google Scholar
  5. Holdensgaard, G., C. Pedersen & S. Thomassen, 1997. Nedvandring af laksesmolt udsat som 1/2-årsfisk, 1-årsfisk og smolt, samt nedvandring af ørredsmolt i Gudenåen og Tange Sø 1994-1996. Rapport 2, 45 pp. (In Danish).Google Scholar
  6. Holling, C. S., 1959. Some characteristics of simple type of predation and parasitism. Can. Entomol. 91: 384-398.Google Scholar
  7. Holling, C. S., 1965. The functional response of predators to prey density and its role in mimicry and population regulation. Mem. entomol. Soc. Can. 45: 1-60.Google Scholar
  8. Jepsen, N., 1999. Behaviour of lake piscivores and their predation on migrating smolts. Ph.D. dissertation. Environmental Engineering Laboratory, Aalborg University, 159 pp.Google Scholar
  9. Jepsen, N., K. Aarestrup, F. Økland & G. Rasmussen, 1998. Survival of radiotagged Atlantic salmon (Salmo salar L.)-and trout (Salmo trutta L.) smolts passing a reservoir during seaward migration. Hydrobiologia 371/372: 347-353.Google Scholar
  10. Koed, A., 2000. River dwelling piscivorous pikeperch Stizostedion lucioperca (L.): some biological characteristics and their ecological consequences. Ph.D. dissertation. University of Copenhagen, 191 pp.Google Scholar
  11. Koed, A., P. Mejlhede, K. Balleby & K. Aarestrup, 2000. Annual movements and migration of adult pikeperch in a lowland river. J. Fish Biol. 57: 1266-1279.Google Scholar
  12. Lowry, O. H., N. J. Rosebrough, A. L. Farr & R. J. Randall, 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193: 265-275.Google Scholar
  13. McCleave, J. D. & K. A. Stred, 1975. Effect of dummy telemetry transmitters on stamina of Atlantic salmon (Salmo salar) smolts. J. Fish. Res. Bd. Can. 32: 559-563.Google Scholar
  14. McCormick, S. D., 1993. Methods for non-lethal gill biopsy and measurement of gill Na+, K+-ATPase activity. Can. J. Fish. aquat. Sci. 50: 656-658.Google Scholar
  15. Mellas, E. & J.M. Haynes, 1985. Swimming performance and behavior of rainbow trout (Salmo gairdneri) and white perch (Morone americane): effects of attaching telemetry transmitters. Can. J. Fish. aquat. Sci. 42: 488-493.Google Scholar
  16. Mesa, M. G., T. P. Poe, D. M. Gadomski & J. H. Petersen, 1994. Are all prey created equal? A review and synthesis of differential predation on prey in substandard condition. J. Fish Biol. 45: 81-96.Google Scholar
  17. Nielsen, C., G. Holdensgaard, H. C. Petersen, B. Th. Björnsson & S. S. Madsen, 2001. Genetic differences in physiology, growth hormone levels and migratory behaviour of Atlantic salmon smolts. J. Fish Biol. 59: 28-44.Google Scholar
  18. Nielsen, J., 1983. Fiskene i Skanderborg Søerne. Skanderborg: Skanderborg Kommune, 118 pp. (In Danish, with figure and table captions in English).Google Scholar
  19. Nielsen, J., 1997. Smoltvandringer hos laks (Salmo salar) og havørred (Salmo trutta) i vandløb og søer. Lyngby: Cowi., 39 pp. (In Danish).Google Scholar
  20. Peake, S., F. W. H. Beamish, R. S. McKinley, D. A. Scruton & C. Katopodis, 1997. Relating swimming performance of lake sturgeon, Acipenser fluscens, to fishway design. Can. J. Fish. aquat. Sci. 54: 1361-1366.Google Scholar
  21. Peterman, R. M. & M. Gatto, 1978. Estimation of functional responses of predators on juvenile salmon. J. Fish. Res. Bd Can. 35: 797-808.Google Scholar
  22. Petersen, J. H., 1994. Importance of spatial pattern in estimating predation on juvenile salmonids in the Colombia River. Trans. am. Fish. Soc. 123: 924-930.Google Scholar
  23. Poe, T. P., R. S. Shively & R. A. Tabor, 1994. Ecological consequences of introduced piscivorous fishes in the lower Columbia and Snake rivers. In Stouder, D. J., K. L. Fresh & R. J. Feller (eds), Theory and Application of Fish Feeding Ecology. The Belle W. Baruch Libary in Marine Science, University of South Carolina Press, Columbia, South Carolina 18: 347-360.Google Scholar
  24. Rasmussen, G., K. Aarestrup & N. Jepsen, 1996. Mortality of sea trout (Salmo trutta L.) and Atlantic salmon (Salmo salar L.) smolts during seaward migration through rivers and lakes in Denmark. ICES Council Meeting papers. Copenhagen. 1996/T, 9 pp.Google Scholar
  25. Rieman, B. E., R. C. Beamesderfer, S. Vigg & T. P. Poe, 1991. Estimated loss of juvenile salmonids to predation by northern squawfish, walleyes, and smallmouth bass in John Day Reservoir, Colombia River. Trans. am. Fish. Soc. 120: 448-458.Google Scholar
  26. Rodgers, J. D., R. D. Ewing & J. D. Hall, 1987. Physiological changes during seaward migration of wild juvenile coho salmon (Oncorhynchus kisutch). Can. J. Fish. aquat. Sci. 44: 452-457.Google Scholar
  27. Shively, R. S., T. P. Poe & S. Sauter, 1996. Feeding response by northern squawfish to a hatchery release of juvenile salmonids in the Clearwater River, Idaho. Trans. am. Fish. Soc. 125: 230-236.Google Scholar
  28. Solomon, D. J. 1978. Some observations on salmon smolt migration in a chalkstream. J. Fish Biol. 12: 571-574.Google Scholar
  29. Ward, D. L., J. H. Petersen & J. Loch, 1995. Index of predation on juvenile salmonids by northern squawfish in the lower and middle Columbia River and the lower Snake River. Trans. am. Fish. Soc. 124: 321-334.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  1. 1.Department of Inland FisheriesDanish Institute for Fisheries ResearchSilkeborgDenmark
  2. 2.Institute of BiologyOdense UniversityOdense MDenmark

Personalised recommendations