Minds and Machines

, Volume 13, Issue 1, pp 87–101 | Cite as

Physical Hypercomputation and the Church–Turing Thesis

  • Oron Shagrir
  • Itamar Pitowsky
Article

Abstract

We describe a possible physical device that computes a function that cannot be computed by a Turing machine. The device is physical in the sense that it is compatible with General Relativity. We discuss some objections, focusing on those which deny that the device is either a computer or computes a function that is not Turing computable. Finally, we argue that the existence of the device does not refute the Church–Turing thesis, but nevertheless may be a counterexample to Gandy's thesis.

Church–Turing thesis effective computation Gandy's thesis physical hypercomputation supertasks 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Church A. (1936a), 'An Unsolvable Problem of Elementary Number Theory', American Journal of Mathematics 58, pp. 345–363. Reprinted in Davis (1965), pp. 88- 107.Google Scholar
  2. Church A. (1936b), 'A Note on the Entscheidungsproblem', Journal of Symbolic Logic 1, pp. 40–41. Reprinted in Davis (1965), pp. 108- 115.Google Scholar
  3. Cleland C. (1993), 'Is the Church- Turing Thesis True?' Minds and Machines 3, pp. 283–312.Google Scholar
  4. Copeland B.J. (1996), 'The Church- Turing Thesis', in Perry J. and Zalta E., eds., Stanford Encyclopedia of Philosophy [http://plato.stanford.edu].Google Scholar
  5. Copeland B.J. (2002), 'Accelerating Turing Machines', Minds and Machines 12, pp. 281–301.Google Scholar
  6. Copeland B.J. and Sylvan R. (1999), 'Beyond the Universal Turing Machine', Australasian Journal of Philosophy 77, pp. 46–67.Google Scholar
  7. Davis M. (ed.) (1965), The Undecidable: Basic Papers on Undecidable Propositions, Unsolvable Problems and Computable Functions,NewYork: Raven.Google Scholar
  8. Earman J. (1986), A Primer of Determinism, Holland: Reidel.Google Scholar
  9. Earman J. and Norton J.D. (1993), 'Forever is A Day: Supertasks in Pitowsky and Malament-Hogarth Spacetimes', Philosophy of Science 60, pp. 22–42.Google Scholar
  10. Gandy R.O. (1980), 'Church's Thesis and Principles of Mechanisms', in Barwise J., Keisler J.J. and Kunen K., eds., The Kleene Symposium, Amsterdam: North-Holland, pp. 123–145.Google Scholar
  11. Gandy R.O. (1988), 'The Confluence of Ideas in 1936', in Herken (1988), pp. 55–111.Google Scholar
  12. Gödel K. (1931), 'On Formally Undecidable Propositions of Principia Mathematica and Related Systems I', Monatshefte für Mathematik und Physik 38, pp. 173–198. Translated and Reprinted in Davis (1965), pp. 5- 38.Google Scholar
  13. Goldstine H.H. (1972), The Computer from Pascal to Von Neumann, Princeton: Princeton University Press.Google Scholar
  14. Herken R. (ed.) (1988), The Universal Turing Machine A Half-Century Survey, Oxford: Oxford University PressGoogle Scholar
  15. Hilbert D. and Ackermann W. (1928), Grundzuge der Theoretischen Logic, Berlin: Springer-Verlag.Google Scholar
  16. Hodges A. (1983), Alan Turing: The Enigma, New York: Touchstone, Simon and Schuster.Google Scholar
  17. Hogarth M.L. (1992), 'Does General Relativity Allow an Observer to View an Eternity in a Finite Time?', Foundations of Physics Letters 5, pp. 173–181.Google Scholar
  18. Hogarth M.L. (1994), 'Non-Turing Computers and Non-Turing Computability', Proceedings of the Philosophy of Science Association (PSA) 1, pp. 126–138.Google Scholar
  19. Kleene S.C. (1936), 'General Recursive Functions of Natural Numbers', Mathematische Annalen 112, pp. 727–742. Reprinted in Davis (1965), pp. 236- 253.Google Scholar
  20. Kleene S.C. (1988), 'Turing's Analysis of Computability, and Major Applications of It', in Herken (1988), pp. 17–54.Google Scholar
  21. Laraudogoitia J.P. (1999), 'Supertasks', in Perry J. and Zalta E., eds., Stanford Encyclopedia of Philosophy [http://plato.stanford.edu].Google Scholar
  22. Moore C. (1990), 'Unpredictability and Undecidability in Dynamical Systems', Physical Review Letters 64, pp. 2354–2357.Google Scholar
  23. Penrose R. (1994), Shadows of the Mind, New York and Oxford: Oxford University Press.Google Scholar
  24. Pitowsky I. (1990), 'The Physical Church Thesis and Physical Computational Complexity', Iyyun 39, pp. 81–99.Google Scholar
  25. Pitowsky I. (1996), 'Laplace's Demon Consults an Oracle: The Computational Complexity of Prediction', Studies in History and Philosophy of Physics 27, pp. 161–180.Google Scholar
  26. Post E.L. (1936), 'Finitary Combinatory Processes - Formulation I', Journal of Symbolic Logic 1, pp. 103–105. Reprinted in Davis (1965), pp. 288- 291.Google Scholar
  27. Pour-El M.B. and Richards I. (1981), 'The Wave Equation with Computable Initial Data such that its Unique Solution is not Computable', Advances in Mathematics 39, pp. 215–239.Google Scholar
  28. Shagrir O. (1997), 'Two Dogmas of Computationalism', Minds and Machines 7, pp. 321–344.Google Scholar
  29. Shapiro S. (1983), 'Remarks on the Development of Computability', History and Philosophy of Logic 4, pp. 203–220.Google Scholar
  30. Sieg W. (1994), 'Mechanical Procedures and Mathematical Experience', in George A., ed., Mathematics and Mind, Oxford: Oxford University Press.Google Scholar
  31. Sieg W. and Byrnes J. (1999), 'An Abstract Model for Parallel Computations: Gandy's Thesis', The Monist 82, pp. 150–164.Google Scholar
  32. Siegelmann H.T. (1995), 'Computation Beyond Turing Limit', Science 268, pp. 545–548.Google Scholar
  33. Turing A.M. (1936), 'On Computable Numbers, with an Application to the Entscheidungsproblem', Proceedings of the London Mathematical Society (2) 42, pp. 230–265. A correction in 43 (1937), pp. 544- 546. Reprinted in Davis (1965), pp. 115- 154.Google Scholar
  34. Turing A.M. (1939), 'Systems of Logic Based on Ordinals', Proceedings of the London Mathematical Society 45(2), pp. 161–228. Reprinted in Davis (1965), pp. 154- 222Google Scholar
  35. Wald R.M. (1984), General Relativity, Chicago: University of Chicago Press.Google Scholar
  36. Wolfarm S. (1985), 'Undecidability and Intractability in Theoretical Physics', Physical Review Letters 54, pp. 735–738.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Oron Shagrir
    • 1
  • Itamar Pitowsky
    • 1
  1. 1.Department of PhilosophyThe Hebrew University of JerusalemIsrael

Personalised recommendations