Plasma Chemistry and Plasma Processing

, Volume 22, Issue 4, pp 475–493

Two-Temperature Transport Coefficients in Argon–Hydrogen Plasmas—II: Inelastic Processes and Influence of Composition

  • V. Rat
  • P. André
  • J. Aubreton
  • M.F. Elchinger
  • P. Fauchais
  • A. Lefort
Article

Abstract

Recently, a two-temperature transport properties theory has been proposed that retains the coupling between electrons and heavy species in thermal plasmas where the kinetic temperature of electrons Te can be different from that of heavy species Th. This paper is devoted to the application of this approach to an argon–hydrogen mixture at atmospheric pressure, taking into account inelastic processes and considering chemical equilibrium. In this second part are studied:

• the development of a new method to calculate the reaction thermal conductivity (inelastic collisions) in a non-equilibrium (two-temperature) plasma taking into account the coupling between electrons and heavy species;

• the influence of the composition calculation methods comparing the modified equilibrium constant method used in part 1 to the stationary kinetic calculation one;

• the influence on the transport properties (σ, μ, κ) of the composition calculation method and non-equilibrium parameter θ=Te/Th.

The different plasma compositions obtained either through an equilibrium constant or a stationary kinetic method are first compared and, for example, for θ=1.6, a discontinuity at Te=11,000 K and an ionization delay are observed in stationary kinetic calculation, relative to the equilibrium constant method. Electrical conductivity, viscosity as well as thermal conductivity, including the translational, internal and reactional contributions, are calculated up to 25,000 K. It is shown that the plasma composition has a strong influence on transport coefficients, inducing shifts or discontinuities in the curves of transport coefficients, depending on the chosen method of calculation.

Two-temperature thermal plasma transport coefficients argon–hydrogen plasma composition stationary kinetic calculation reactional thermal conductivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    V. Rat, P. André, J. Aubreton, M. F. Elchinger, P. Fauchais, and A. Lefort, Phys. Rev. E. 64, 26409 (1-20) (2001).Google Scholar
  2. 2.
    C. Bonnefoi, State thesis, University of Limoges, France (1983) (in French).Google Scholar
  3. 3.
    R. S. Devoto, PhD thesis, Stanford University (1965).Google Scholar
  4. 4.
    M. C. M. van de Sanden, P. P. J. M. Schram, A. G. Peeters, J. A. M. van der Mullen, and G. M. W. Kroesen, Phys. Rev. A, 40, 5273–5276 (1989).Google Scholar
  5. 5.
    A. B. Murphy and C. J. Arundell, Plasma Chem. Plasma Process. 14, 451–490 (1994).Google Scholar
  6. 6.
    A. B. Murphy, Plasma Chem. Plasma Proc. 15, 279–307 (1995).Google Scholar
  7. 7.
    A. B. Murphy, Plasma Chem. Plasma Proc. 20, 279–297 (2000).Google Scholar
  8. 8.
    V. Rat, P. André, J. Aubreton, M. F. Elchinger, P. Fauchais, and A. Lefort, J. Phys. D: Applied Phys. 34, 2191–2204 (2001).Google Scholar
  9. 9.
    M. I. Boulos, P. Fauchais, and E. Pfender, Thermal Plasmas: Fundamentals and Application, Vol. 1, Plenum, New York (1994).Google Scholar
  10. 10.
    C. Bonnefoi, J. Aubreton, and J. M. Mexmain, Z. Naturforsch. 40a, 885–891 (1985).Google Scholar
  11. 11.
    J. Aubreton, M. F. Elchinger, and P. Fauchais, Plasma Chem. Plasma Proc. 18, 1–27 (1998).Google Scholar
  12. 12.
    J. N. Butler and R. S. Brokaw, J. Chem. Phys. 26, 1636–1643 (1957).Google Scholar
  13. 13.
    J. Aubreton, State thesis, University of Limoges, France (1985) (in French).Google Scholar
  14. 14.
    E. Richley and D. T. Tuma, J. Appl. Phys. 53, 8537–8542 (1982).Google Scholar
  15. 15.
    A. V. Potapov, High Temp. 4, 48–51 (1966).Google Scholar
  16. 16.
    P. André, PhD thesis, University Blaise Pascal Clermont-Ferrand, France (1995). (in French)Google Scholar
  17. 17.
    Xi Chen and Peng Han, J. Phys. D: Appl. Phys. 32, 1711–1718 (1999).Google Scholar
  18. 18.
    Y. Tanaka, Y. Yokomizu, M. Ishikawa, and T. Matsumura, IEEE Trans. Plasma Sci. 25, 991–995 (1997).Google Scholar
  19. 19.
    A. V. Phelps, J. Phys. Chem. Ref. Data 21, 883–897 (1992).Google Scholar
  20. 20.
    A. V. Phelps, J. Phys. Chem. Ref. Data 19, 653–675 (1990).Google Scholar
  21. 21.
    G. H. Tawara, Y. Itikawa, H. Nishimura, and M. Yoshino, J. Phys. Chem. Ref. Data 19, 617–636 (1992).Google Scholar
  22. 22.
    K. Stephan, H. Helm, and T. D. Mark, J. Chem. Phys. 73, 3763–3778 (1980).Google Scholar
  23. 23.
    G. J. Cliteur, K. Suzuki, Y. Tanaka, T. Sakuta, T. Matsubara, Y. Yokomizu, and T. Matsumura, J. Phys. D: Appl. Phys. 32, 1851–1856 (1999).Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • V. Rat
    • 1
  • P. André
    • 2
  • J. Aubreton
    • 1
  • M.F. Elchinger
    • 1
  • P. Fauchais
    • 1
  • A. Lefort
    • 2
  1. 1.SPCTS UMR CNRS 6638University of LimogesLimoges cedexFrance
  2. 2.LAEPT UMR CNRS 6069Blaise Pascal UniversityAubière cedexFrance

Personalised recommendations