Environmental Monitoring and Assessment

, Volume 81, Issue 1–3, pp 313–326 | Cite as

Molecular Approaches to Microbiological Monitoring: Fecal Source Detection

  • Katharine G. Field
  • Anne E. Bernhard
  • Timothy J. Brodeur


Molecular methods are useful both to monitor natural communities of bacteria, and to track specific bacterial markers in complex environments. Length-heterogeneity polymerase chain reaction (LH-PCR) and terminal restriction fragment length polymorphism (T-RFLP) of 16S rDNAs discriminate among 16S rRNA genes based on length polymorphisms of their PCR products. With these methods, we developed an alternative indicator that distinguishes the source of fecal pollution in water. We amplify 16S rRNA gene fragments from the fecal anaerobic genus Bacteroides with specific primers. Because Bacteroides normally resides in gut habitats, its presence in water indicates fecal pollution. Molecular detection circumvents the complexities of growing anaerobic bacteria. We identified Bacteroides LH-PCR and T-RFLP ribosomal DNA markers unique to either ruminant or human feces. The same unique fecal markers were recovered from polluted natural waters. We cloned and sequenced the unique markers; marker sequences were used to design specific PCR primers that reliably distinguish human from ruminant sources of fecal contamination. Primers for more species are under development. This approach is more sensitive than fecal coliform assays, is comparable in complexity to standard food safety and public health diagnostic tests, and lends itself to automation and high-throughput. Thus molecular genetic markers for fecal anaerobic bacteria hold promise for monitoring bacterial pollution and water quality.

Microbiological monitoring fecal contamination fecal source discrimination Bacteroides anaerobic bacteria LH-PCR T-RFLP bacterial communities molecular markers 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allsop, K., and Stickler, J.D.: 1985, ‘An assessment of Bacteroides fragilis group organisms as indicators of human faecal pollution’, J. Appl. Bacteriol. 58, 95–99.Google Scholar
  2. Andrews, R. W., Conway, R. A., Corr, C. L., Dobratz, E. J., Dougherty, D. P., Eppard, J. R., Knupp, S. R., Limjoco, M. C., Mettenburg, J. M., Rinehardt, J. M., Sonsino, J., Torrijos, R. L., Zimmerman, M. E., and Wiggins, B. A.: 1997, ‘Classification of fecal streptococci isolated from potential sources of fecal pollution using discriminant analysis: supporting evidence from large datasets’, Abstracts, American Society of Microbiology General Meeting, Miami Beach, Florida.Google Scholar
  3. Avaniss-Aghajani, E. A., Jones, K., Chapman, D., and Brunk, C.: 1994, ‘A molecular technique for identification of bacteria using small subunit ribosomal RNA sequences’, BioTechniques 17, 144–149.Google Scholar
  4. Avelar, K. E. S., Morales, S. R., Pinto, L. J. F., Silva e Sousa, R. M. C. P. D., and Ferreira, M. C. d. S.: 1998, ‘Influence of stress conditions of Bacteroides fragilis survival and protein profiles’, Zent. bl. Bakteriol. 287, 399–409.Google Scholar
  5. Bernhard, A. E., and Field, K.G.: 2000a, ‘Identification of nonpoint sources of fecal pollution in coastal waters by using host-specific 16S ribosomal DNA genetic markers from fecal anaerobes’, Appl. Environ. Microbiol. 66, 1587–1594.Google Scholar
  6. Bernhard, A. E., and Field, K. G.: 2000b, ‘A PCR assay to discriminate human and ruminant feces on the basis of host differences in Bacteroides-Prevotella genes encoding 16S rRNA’, Appl. Environ. Microbiol. 66, 4571–4574.Google Scholar
  7. Bruce, K. D.: 1997, ‘Analysis of mer gene subclasses within bacterial communities in soils and sediments resolved by fluorescent-PCR-restriction fragment length polymorphism profiling’, Appl. Environ. Microbiol. 63, 4914–4919.Google Scholar
  8. Brunk, C. F., Avaniss-Aghajani, E., and Brunk, C. A.: 1996, ‘A computer analysis of primer and probe hybridization potential with bacterial small-subunit rRNA sequences’, Appl. Environ. Microbiol. 62, 872–879.Google Scholar
  9. Carson, C. A., Shear, B. L., Ellershiek, M. R., and Asfaw, A.: 2001, ‘Identification of fecal Escherichia coli from humans and animals by ribotyping’, Appl. Environ. Microbiol. 67, 1503–1507.Google Scholar
  10. Clement, B. G., Kehl, L. E., DeBord, K. L., and Kitts, C. L.: 1998, ‘Terminal restriction fragment patterns (TRFPs), a rapid, PCR-based method for the comparison of complex bacterial communities’, J. Microbiol. Methods 31, 135–142.Google Scholar
  11. DePaola, A., Hophins, L. H., Peeler, J. T., Wentz, B., and McPhearson, R. M.: 1990, ‘Incidence of Vibrio parahaemolyticus in U. S. coastal waters and oysters’, Appl. Environ. Microbiol. 56, 2299–2302.Google Scholar
  12. Dombek, P. E., Johnson, L. K., Zimmerley, S. T., and Sadowsky, M. J.: 2000, ‘Use of repetitive DNA sequences and the PCR to differentiate Escherichia coli isolates from human and animal sources’, Appl. Environ. Microbiol. 66, 2572–2577.Google Scholar
  13. Gary, H. L., and Adams, J. C.: 1985, ‘Indicator bacteria in water and stream sediments near the snowy range in southern Wyoming’, Water, Air, Soil Pollut. 25, 133–144.Google Scholar
  14. Gerba, C. P., and McLeod, J. S.: 1976, ‘Effect of sediments on the survival of Escherichia coli in marine waters’, Appl. Environ. Microbiol. 32, 114–120.Google Scholar
  15. Goyal, S. M., Zerda, K. S., and Gerba, C. P.: 1980, ‘Concentration of coliphage from large volumes of water and wastewater’, Appl. Environ. Microbiol. 59, 2956–2962.Google Scholar
  16. Harwood, V. J., Butler, J., Parrish, D., and Wagner, V.: 1999, ‘Isolation of fecal coliform bacteria from the diamondback terrapin (Malaclemys terrapin centrata)’, Appl. Environ. Microbiol. 65, 865–867.Google Scholar
  17. Havelaar, A. H., van Olphen, M., and Drost, Y. C.: 1993, ‘F-specific RNA bacteriophages are adequate model organisms for enteric viruses in fresh water’, Appl. Environ. Microbiol. 59, 2956–2962.Google Scholar
  18. Holdeman, V., Cato, E. P., and Moore, W. E. C.: 1976, ‘Human fecal flora: variation in bacterial composition within individuals and a possible effect of emotional stress’, Appl. Environ. Microbiol. 31, 359–375.Google Scholar
  19. Hood, M. A., and Ness, G. E.: 1982, ‘Survival of Vibrio cholerae and Escherichia coli in estuarine waters and sediments’, Appl. Environ. Microbiol. 43, 578–584.Google Scholar
  20. Howell, J. M., Coyne, M. S., and Cornelius, P. L.: 1996, ‘Effect of sediment particle size and temperature on fecal bacteria mortality rates and the fecal coliform/fecal streptococci ratio’, J. Environ. Qual. 25, 1216–1220.Google Scholar
  21. Kreader, C. A.: 1995, ‘Design and evaluation of Bacteroides DNA probes for the specific detection of human fecal pollution’, Appl. Environ. Microbiol. 61, 1171–1179.Google Scholar
  22. Kreader, C. A.: 1998, ‘Persistence of PCR-detectable Bacteroides distasonis from human feces in river water’, Appl. Environ. Microbiol. 64, 4103–4105.Google Scholar
  23. LaLiberte, P., and Grimes, D. J.: 1982, ‘Survival of Escherichia coli in lake bottom sediment’, Appl. Environ. Microbiol. 43, 623–628.Google Scholar
  24. Liu, W.-T., Marsh, T. L., Cheng, H., and Forney, L. J.: 1997, ‘Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA’, Appl. Environ. Microbiol. 63, 4516–4522.Google Scholar
  25. Mintie, A., Bernhard, A. E., Trippet, D., Cooper, B., Buccafurni, D., and Field, K. G.: 2000 (abstract), ‘Phylogenetic diversity of Bacteroides-Prevotella 16S rRNA genes from cow and human feces’, American Society for Microbiology, Los Angeles, CA.Google Scholar
  26. Moore, W. E. C., and Holdeman, L. V.: 1974, ‘Human fecal flora: the normal flora of 20 Japanese-Hawaiians’, Appl. Microbiol. 27, 552–555.Google Scholar
  27. Osawa, S., Furuse, K., and Watanabe, I.: 1981, ‘Distribution of ribonucleic coliphages in animals’, Appl. Environ. Microbiol. 41, 164–168.Google Scholar
  28. Palmateer, G. A., Dutka, E. M., Jantzen, E. M., Meissner, S. M., and Sakeellaries, M. G.: 1991, ‘Coliphage and bacteriophage as indicators of recreational water quality’, Water Research 25, 355–357.Google Scholar
  29. Parveen, S., Portier, K. M., Robinson, K., Edmiston, L., and Tamplin, M.: 1999, ‘Discriminate analysis of ribotype profiles of Escherichia coli for differentiating human and nonhuman sources of fecal pollution’, Appl. Environ. Microbiol. 65, 3142–3147.Google Scholar
  30. Paster, B. J., Dewhirst, F. E., Olsen, I., and Fraser, G. J.: 1994, ‘Phylogeny of Bacteroides, Prevotella, and Porphyromonas spp. and related bacteria’, J. Bacteriol. 176, 725–732.Google Scholar
  31. Paul, J. H., Rose, J. B., Jiang, S. C., London, P., Xhou, X., and Kellogg, C.: 1997, ‘Coliphage and indigenous phage in Mamala Bay, Oahu, Hawaii’, Appl. Environ. Microbiol. 63, 133–138.Google Scholar
  32. Pommepuy, M., Guillaud, J. F., Dupray, E., Derien, A., Le Guyader, F., and Cormier, M.: 1992, ‘Enteric bacteria survival factors’, Water Sci. Technol. 12, 93–103.Google Scholar
  33. Rappé, M. S., Kemp, P. F., and Giovannoni, S. J.: 1997, ‘Phylogenetic diversity of marine coastal picoplankton 16S rRNA genes cloned from the continental shelf off Cape Hatteras, North Carolina’, Limnol. Ocean. 42, 811–826.Google Scholar
  34. Salyers, A. A.: 1984, ‘Bacteroides of the human lower intestinal tract’, Ann. Rev. Microbiol. 38, 293–313.Google Scholar
  35. Sherer, B. M., Miner, J. R., Moore, J. A., and Buckhouse, J. C.: 1988, ‘Resuspending organisms from a rangeland stream bottom’, Trans. Amer. Soc. Ag. Eng. 31, 1217–1222.Google Scholar
  36. Singh, S. N., and Gerba, C. P.: 1983, ‘Concentration of coliphages from water and sewage with charge-modified filter aid.’, Appl. Environ. Microbiol. 45, 232–237.Google Scholar
  37. Sinton, L. W., Donnison, A. M., and Hastie, C. M.: 1993, ‘Faecal streptococci as faecal pollution indicators: a review. Part II: Sanitary significance, survival, and use’, New Zealand J. Marine Freshwater Res. 27, 117–137.Google Scholar
  38. Sobsey, M. D.: 1989, ‘Inactivation of health-related microorganisms in water by disinfection processes’, Water Sci. Technol. 21, 179–195.Google Scholar
  39. Straub, D. V., and Dixon, B.: 1997, ‘Bacteroides vulgatus, an alternative indicator for the assessment of fecal contamination of shellfish and estuarine waters’, 38th Annual Western Fish Disease Workshop, Bodega Marine Laboratory, Bodega Bay, CA.Google Scholar
  40. Suzuki, M. T., Rappé, M. S., Haimberger, Z. W., Winfield, H., Adair, N., Ströbel, J., and Giovannoni, S. J.: 1997, ‘Bacterial diversity among small-subunit rRNA gene clones and cellular isolates from the same seawater sample’, Appl. Envir. Microbiol. 63, 983–989.Google Scholar
  41. Tartera, C., and Jofre, J.: 1987, ‘Bacteriophages active against Bacteroides fragilis in sewage polluted waters’, Appl. Environ. Microbiol. 53, 1632–1637.Google Scholar
  42. Tartera, C., Lucena, F., and Jofre, J.: 1989, ‘Human origin of Bacteroides fragilis bacteriophages present in the environment’, Appl. Environ. Microbiol. 55, 2696–2701.Google Scholar
  43. Weiskel, P. K., Howes, B. L., and Heufelder, G. R.: 1996, ‘Coliform contamination of a coastal embayment: sources and transport pathways’, Environ. Sci. Technol. 30, 1872–1881.Google Scholar
  44. Wiggins, B. A.: 1996, ‘Discriminant analysis of antibiotic resistance patterns in fecal streptococci, a method to differentiate human and animal sources of fecal pollution in natural waters’, Appl. Environ. Microbiol. 62, 3997–4002.Google Scholar
  45. Wiggins, B. A., Andrews, R. W., Conway, R. A., Corr, C. L., Dobratz, E. J., Dougherty, D. P., Eppard, J. R., Knupp, S. R., Limjoco, M. C., Mettenburg, J. M., Rinehardt, J. M., Sonsino, J., Torrijos, R. L., and Zimmerman, M. E.: 1999, ‘Use of antibiotic resistance analysis to identify nonpoint sources of fecal pollution’, Appl. Environ. Microbiol. 65, 3483–3486.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Katharine G. Field
    • 1
  • Anne E. Bernhard
    • 2
  • Timothy J. Brodeur
    • 1
  1. 1.Department of MicrobiologyOregon State UniversityCorvallis
  2. 2.Department of Civil and Environmental EngineeringUniversity of WashingtonSeattle

Personalised recommendations