Climatic Change

, Volume 56, Issue 1–2, pp 185–210

Modeling Agriculture and Land Use in an Integrated Assessment Framework

  • Ronald D. Sands
  • Marian Leimbach
Article

Abstract

The Agriculture and Land Use (AgLU) model is a top-downeconomic model with just enough structure to simulate globalland-use change and the resulting carbon emissions over one century.These simulations are done with and without a carbon policy representedby a positive carbon price. Increases in the carbon price createincentives for production of commercial biomass that affect thedistribution of other land types and, therefore, carbon emissionsfrom land-use change. Commercial biomass provides a link betweenthe agricultural and energy systems. The Integrated Assessmentof Climate Protection Strategies (ICLIPS) core model uses AgLUto provide estimates of carbon emissions from land-use changeas one component of total greenhouse gas emissions. Each majorland-use type is assigned an average carbon density used to calculatea total carbon stock; carbon emissions from land-use change arecalculated as the change in carbon stock between time periods.Significant carbon emissions from land-use change are presenteven in the reference scenario. An aggressive ICLIPS mitigationscenario results in carbon emissions from land-use change upto 800 million metric tons per year above the AgLU referencescenario.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, D. M., Alig, R. J., Callaway, J. M., McCarl, B. A., and Winnett, S. M.: 1996, The Forest and Agricultural Sector Model (FASOM): Model Structure and Policy Applications, Research Paper PNW-RP-495, Forest Service, United States Department of Agriculture, Pacific Northwest Research Station, Portland, OR.Google Scholar
  2. Alcamo, J., Kreileman, E., Krol, M., Leemans, R., Bollen, J., van Minnen, J., Schaeffer, M., Toet, S., and de Vries, B.: 1998, ‘Global Modeling of Environmental Change: An Overview of IMAGE 2.1’, in Alcamo, Leemans, Kreileman (eds.), Global Change Scenarios of the 21st Century: Results from the IMAGE 2.1 Model, Elsevier Science, Oxford, U.K.Google Scholar
  3. Amemiya, T.: 1985, Advanced Econometrics, Harvard University Press, Cambridge, MA.Google Scholar
  4. Bury, K.: 1999, Statistical Distributions in Engineering, Cambridge University Press, New York, NY.Google Scholar
  5. Clarke, J. F. and Edmonds, J. A.: 1993, ‘Modelling Energy Technologies in a Competitive Market’, Energy Economics 15 (2), 123–129.Google Scholar
  6. Darwin, R., Tsigas, M., Lewandrowski, J., and Raneses, A.: 1995, World Agriculture and Climate Change: Economic Adaptations, Agriculture Economic Report 703, United States Department of Agriculture, Washington, D.C.Google Scholar
  7. Edmonds, J. and Reilly, J. M.: 1985, Global Energy: Assessing the Future, Oxford University Press, New York, NY.Google Scholar
  8. Edmonds, J. A., Wise, M. A., Sands, R. D., Brown, R. A., and Kheshgi, H.: 1996, Agriculture, Land Use, and Commercial Biomass Energy, PNNL-SA-27726, Pacific Northwest National Laboratory, Richland, WA.Google Scholar
  9. FAO (Food and Agriculture Organization of the United Nations): 2000, FAOSTAT data base, http://apps.fao.org.Google Scholar
  10. Fischer, G., Frohberg, K. K., Keyzer, M. A., and Parikh, K. S.: 1988, Linked National Models: A Tool for International Food Policy Analysis, Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
  11. Goldemberg, J., Monaco, L. C., and Macedo, I. C.: 1993, ‘The Brazilian Fuel-Alcohol Program’, in Johansson, T. B., Kelly, H., Reddy, A. K. N., and Williams, R. H. (eds.), Renewable Energy: Sources for Fuels and Electricity, Island Press, Washington, D.C.Google Scholar
  12. Lambin, E. F., Turner, B. L., Geist, H. J., Agbola, S. B., Angelsen, A., Bruce, J. W., Coomes, O. T., Dirzo, R., Fischer, G., Folke, C., George, P. S., Homewood, K., Imbernon, J., Leemans, R., Li, X., Moran, E. F., Mortimore, M., Ramakrishnan, P. S., Richards, J. F., Skånes, H., Steffen, W., Stone, G. D., Svedin, U., Veldkamp, T. A., Vogel, C., and Xu, J.: 2001, ‘The Causes of Land-Use and Land-Cover Change: Moving beyond the Myths’, Global Environ. Change 11 (4), 261–269.Google Scholar
  13. Leemans, R., van Amstel, A., Battjes, C., Kreileman, E., and Toet, S.: 1996, ‘The Land Cover and Carbon Cycle Consequences of Large-Scale Utilization of Biomass as an Energy Source’, Global Environ. Change 6 (4), 335–357.Google Scholar
  14. Leimbach, M. and Toth, F. L.: 2003, ‘Economic Development and Emission Control over the Long Term: The ICLIPS Aggregated Economic Model’, Clim. Change, this issue.Google Scholar
  15. Toth, F. L., Bruckner, T., Fuessel, H.-M., Leimbach, M., and Petschel-Held, G.: 2003, ‘Integrated Assessment of Long-Term Climate Policies: Part 1-Model Presentation’, Clim. Change, this issue.Google Scholar
  16. WRI (World Resources Institute): 1992, World Resources 1992-1993, Oxford University Press, New York, NY.Google Scholar
  17. Wyman, C. E., Bain, R. L., Hinman, N. D., and Stevens, D. J.: 1993, ‘Ethanol and Methanol from Cellulosic Biomass’, in Johansson, T. B., Kelly, H., Reddy, A. K. N., and Williams, R. H. (eds.), Renewable Energy: Sources for Fuels and Electricity, Island Press, Washington, D.C.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Ronald D. Sands
    • 1
  • Marian Leimbach
    • 2
  1. 1.BattelleCollege ParkU.S.A.
  2. 2.Potsdam Institute for Climate Impact Research, TelegrafenbergPotsdamGermany

Personalised recommendations