, Volume 484, Issue 1–3, pp 11–20 | Cite as

Pelagic food web configurations at different levels of nutrient richness and their implications for the ratio fish production:primary production

  • Ulrich Sommer
  • Herwig Stibor
  • Alexis Katechakis
  • Frank Sommer
  • Thomas Hansen


Based on existing knowledge about phytoplankton responses to nutrients and food size spectra of herbivorous zooplankton, three different configurations of pelagic food webs are proposed for three different types of marine nutrient regimes: (1) upwelling systems, (2) oligotrophic oceanic systems, (3) eutrophicated coastal systems. Upwelling systems are characterised by high levels of plant nutrients and high ratios of Si to N and P. Phytoplankton consists mainly of diatoms together with a subdominant contribution of flagellates. Most phytoplankton falls into the food spectrum of herbivorous, crustacean zooplankton. Therefore, herbivorous crustaceans occupy trophic level 2 and zooplanktivorous fish occupy trophic level 3. Phytoplankton in oligotrophic, oceanic systems is dominated by picoplankton, which are too small to be ingested by copepods. Most primary production is channelled through the `microbial loop' (picoplankton – heterotrophic nanoflagellates – ciliates). Sporadically, pelagic tunicates also consume a substantial proportion of primary production. Herbivorous crustaceans feed on heterotrophic nanoflagellates and ciliates, thus occupying a food chain position between 3 and 4, which leads to a food chain position between 4 and 5 for zooplanktivorous fish. By cultural eutrophication, N and P availability are elevated while Si remains unaffected or even declines. Diatoms decrease in relative importance while summer blooms of inedible algae (Phaeocystis, toxic dinoflagellates, toxic prymnesiophyceae, etc.) prevail. The spring bloom may still contain a substantial contribution of diatoms. The production of the inedible algae enters the pelagic energy flow via the detritus food chain: DOC release by cell lysis – bacteria – heterotrophic nanoflagellates – ciliates. Accordingly, crustacean zooplankton occupy food chain position 4 to 5 during the non-diatom seasons. Ecological efficiency considerations lead to the conclusion that fish production:primary production ratios should be highest in upwelling systems and substantially lower in oligotrophic and in culturally eutrophicated systems. Further losses of fish production may occur when carnivorous, gelatinous zooplankton (jellyfish) replace fish.

plankton food web trophic level ecological efficiency copepods fish production 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Azam, F., T. Fenchel, J. G. Field, L. A. Meier-Reil & F. Thingstad, 1983. The ecological role of water column microbes in the sea. Mar. Ecol. Progr. Ser. 10: 257-263.Google Scholar
  2. Barber, R. T. & R. L. Smith, 1981. Coastal upwelling ecosystems. In Longhurst, A. R. (ed.), Analysis of Marine Ecosystems. Academic Press, London: 33-68.Google Scholar
  3. Billen, G. & J. Garnier, 1997. The Phison river plume: coastal eutrophication in response to changes in land use and water management in the watershed. Aquat. Microb. Ecol. 13: 3-17.Google Scholar
  4. Cadée, G. C., 1986. Recurrent and changing seasonal patterns of phytoplankton in the westernmost inlet of the Wadden Sea, the Marsdiep, since 1973. In Lancelot, C., G. Billen & H. Bath (eds), Water Pollution Research Report 12. Commission of the European Community, Luxembourg: 105-112.Google Scholar
  5. Cadée, G. C. & J. Hegeman, 1991. Historical phytoplankton data from the Marsdiep. Hydrobiol. Bull. 24: 111-119.Google Scholar
  6. Carpenter, S. R., J. F. Kitchell & D. R. Hodgson, 1985. Cascading trophic interactions and lake productivity. BioScience 35: 634-639.Google Scholar
  7. Coale, K. H., K. S. Johnson, S. E. Fitzwater, R. M. Gordon, S. Tanner, F. P. Chavez, L. Ferioli, C. Sakamoto, P. Rogers, F. Millero, P. Steinberg, P. Nightingale, D. Cooper, W. P. Cochlan, M. R. Landry, J. Constantinou, G. Rollwagen, A. Trasvina & R. Cudela, 1996. A massive phytoplankton bloom induced by an ecosystem-scale iron fertilisation experiment in the equatorial Pacific Ocean. Nature 383: 495-501.Google Scholar
  8. Cushing, J. D. H., 1971. Upwelling and the productivity of fish. Adv. Mar. Biol. 9: 255-334.Google Scholar
  9. DeMott, W. R., 1988. Discrimination between algae and artificial particles by freshwater and marine copepods. Limnol. Oceanogr. 33: 397-408.Google Scholar
  10. Egge, J. K. & A. Jacobsen, 1997. Influence of silicate on particulate carbon production in phytoplankton. Mar. Ecol. Progr. Ser. 147: 219-230.Google Scholar
  11. Escaravage, V., T. C. Prins, A. C. Smaal, J. C. H. Peeters, 1996. The response of phytoplankton communities to phosphorous input reductions in mesocosm experiments. J. Exp. Mar. Biol. Ecol. 198: 55-79.Google Scholar
  12. Granéli, E., P. Carlsson, P. Olsson, B. Sundström, W. Granéli & O. Lindahl, 1989. From anoxia to fish poisoning: the last ten years of phytoplankton blooms in Swedish marine waters. In Cosper, E. M., V. M. Bricelj & E. J. Carpenter (eds), Novel Phytoplankton Blooms. Springer, New York: 407-427.Google Scholar
  13. Ianora, A., A. Miralto & S. A. Poulet, 1999. Are diatoms good or toxic for copepods? Reply to comment by Jonasdottir et al. Mar. Ecol. Progr. Ser. 177: 305-308.Google Scholar
  14. Ianora, A., S. A. Poulet & A. Miralto, 1995. A comparative study of the inhibitory effect of diatoms on the reproductive biology of the copepod Temora stylifera. Mar. Biol. 121: 533-539.Google Scholar
  15. Iverson, R. L., 1990. Control of marine fish production. Limnol. Oceanogr. 35: 1593-1604.Google Scholar
  16. James, A. G. & X. Chiappa-Carrara, 1990. A comparison of field studies on the trophic ecology of Engraulis capensis and E. mordax. In Barnes, M. & R. N. Gibson (eds), Trophic Relationships in the Marine Environment. Aberdeen Univ. Press: 208-221.Google Scholar
  17. Jonasdottir, S. H., T. Kiørboe, K. W. Tang, M. St. John, A. W. Visser, E. Saiz & H. G. Dam, 1998. Role of diatoms in copepod production: good, harmless or toxic. Mar. Ecol. Progr. Ser. 172: 305-308.Google Scholar
  18. Katechakis, A., 1999. Nischenüberlappung zwischen herbivorem gelatinösen und Crustaceen-Zooplankton im NW-Mittelmeer (Catalanisches Meer). Diploma thesis, Univ. Kiel.Google Scholar
  19. Kiørboe, T., E. Saiz & M. Viitasalo, 1996. Prey switching behaviour of the planktonic copepod Acartia tonsa. Mar. Ecol. Progr. Ser. 143: 65-75.Google Scholar
  20. Kleppel, G. S., 1993. On the diet of calanoid copepods. Mar. Ecol. Progr. Ser. 99: 183-195.Google Scholar
  21. Legovic, T., 1987. A recent increase in jellyfish-populations: A predator-prey model and its implications. Ecol. Modell. 38: 243-256.Google Scholar
  22. Li, W. K. W., T. Zohary, Y. Z. Jacobi & A. M. Wood, 1993. Ultraphytoplankton in the eastern Mediterranean Sea: towards deriving phytoplankton biomass from flow cytometric measures of abundance, fluorescence and light scatter. Mar. Ecol. Progr. Ser. 102: 79-87.Google Scholar
  23. Lindell, D. & A. F. Post, 1995. Ultraphytoplankton succession is triggered by deep winter mixing in the Gulf of Aqaba (Eilat), Red Sea. Limnol. Oceanogr. 40: 1130-1141.Google Scholar
  24. Nejstgaard, J. C., I. Gismervik & P. T. Solberg, 1997. Feeding and reproduction by Calanus finnmarchicus, and microzooplankton grazing during mesocosm blooms of diatoms and the coccolithophore Emiliana huxleyi. Mar. Ecol. Progr. Ser. 147: 197-217.Google Scholar
  25. Pomeroy, L. R., 1974. The ocean foodweb, a changing paradigm. BioScience 24: 499-504.Google Scholar
  26. Radach, G. & J. Berg, 1986. Trends in den Konzentrationen der Nährstoffe und des Phytoplanktons in der Deutschen Bucht. Ber. Biol. Anst. Helgoland 2: 1-165.Google Scholar
  27. Raven, J. A., 1986. Physiological consequences of extremely small size for autotrophic organisms in the sea. Can. Bull. Fish. aquat. Sci. 214: 1-70.Google Scholar
  28. Ryther, J. H., 1969. Photosynthesis and fish production in the Sea. Science 166: 72-78.Google Scholar
  29. Schöllhorn, E. & E. Granéli, 1996. Influence of different nitrogen to silica ratios and artificial mixing on the structure of a summer phytoplankton community from the Swedish west coast (Gullmar Fjord). J. Sea Res. 35: 159-167.Google Scholar
  30. Shushkina, E. A. & M. Y. Vinogradov, 1991. Long-term changes in the biomass of plankton in open areas of the Black Sea. Oceanology 31: 716-721.Google Scholar
  31. Sieburth, J. M. & P. G. Davis, 1982. The role of heterotrophic nanoplankton in the grazing and nurturing of planktonic bacteria in the Sargasso and Caribbean Sea. Annls. Inst. oceanogr. Paris 58: 285-296.Google Scholar
  32. Smayda, T. J., 1990. Novel and nuisance blooms in the sea: evidence for a global epidemic. In Granéli, E., B. Sundström, L. Edler & D. M. Anderson (eds), Toxic Marine Phytoplankton. Elsevier, Amsterdam: 29-41.Google Scholar
  33. Sommer, F., H. Stibor, U. Sommer & B. Velimirov, 2000. Grazing by mesozooplankton from Kiel Bight, Baltic Sea, on different sized algae and natural seston size fractions. Mar. Ecol. Progr. Ser. 199: 43-53.Google Scholar
  34. Sommer, U., 1983. Nutrient competition between phytoplankton species in multispecies chemostat experiments. Arch. Hydrobiol. 96: 399-416.Google Scholar
  35. Sommer, U., 1994. The impact of light intensity and daylength on silicate and nitrate competition among marine phytoplankton. Limnol. Oceanogr. 39: 1680-1688.Google Scholar
  36. Sommer, U., 1996a. Nutrient competition experiments with periphyton from the Baltic Sea. Mar. Ecol. Progr. Ser. 140: 161-167.Google Scholar
  37. Sommer, U., 1996b. Plankton ecology: two decades of progress. Naturwiss. 38: 293-301.Google Scholar
  38. Sommer, U., 1998. From algal competition to animal production: enhanced ecological efficiency of Brachionus with a mixed diet. Limnol. Oceanogr. 43: 1393-1396.Google Scholar
  39. Sommer, U., 1999. A comment on the proper use of nutrient ratios in microalgal ecology. Arch. Hydrobiol. 146: 55-64.Google Scholar
  40. Sommer, U., 2000. Scarcity of medium-sized phytoplankton in the northern Red Sea explained by strong bottom-up and weak topdown control. Mar. Ecol. Progr. Ser. 197: 19-25.Google Scholar
  41. Stockner, J. G. & N. J. Antia, 1986. Algal picoplankton from marine and freshwater ecosystems: a multidisciplinary perspective. Can. J. Fish. aquat. Sci. 43: 2472-2503.Google Scholar
  42. Suttle, C. A., J. G. Stockner & P. J. Harrison, 1987. Effects of nutrient pulses on community structure and cell size of a freshwater phytoplankton assemblage in culture. Can. J. Fish. Aquat. Sci. 44: 1768-1774.Google Scholar
  43. Tilman, D., 1982. Resource Competition and Community Structure. Princeton Univ. Press.Google Scholar
  44. Tilman, D., R. Kiesling, R. W. Sterner, S. S. Kilham & F. A. Johnson, 1986. Green, blue-green and diatom algae: taxonomic differences in competitive ability for phosphorous, silicon and nitrogen. Arch. Hydrobiol. 106: 473-485.Google Scholar
  45. Turpin, D. H. & P. J. Harrison, 1980. Cell size manipulation in natural, marine, planktonic diatom communities. Can. J. Fish. aquat. Sci. 37: 1193-1195.Google Scholar
  46. Verity, P. G. & V. Smetacek, 1996. Organism life cycles, predation, and the structure of marine pelagic systems. Mar. Ecol. Progr. Ser. 130: 277-293.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Ulrich Sommer
    • 1
  • Herwig Stibor
    • 2
  • Alexis Katechakis
    • 2
  • Frank Sommer
    • 1
  • Thomas Hansen
    • 1
  1. 1.Institut für MeereskundeKielGermany
  2. 2.Zoologisches InstitutLudwig-Maximilians-UniversitätMünchenGermany

Personalised recommendations