Climatic Change

, Volume 56, Issue 1–2, pp 91–117 | Cite as

Climate Impact Response Functions as Impact Tools in the Tolerable Windows Approach

  • H.-M. Füssel
  • F. L. Toth
  • J. G. van Minnen
  • F. Kaspar
Article

Abstract

A critical issue for policymakers in defining mitigationstrategies for climate change is the availability ofappropriate evaluation tools. The development of climate impactresponse functions (CIRFs) is our reaction to this challenge.CIRFs depict the response of selected climate-sensitive impactsectors across a wide range of plausible futures. They consist ofa limited number of climate-change-related dimensions andsensitivities of sector-specific impact models. The concept ofCIRFs is defined and the procedure to develop them is presented.The use of climate change scenarios derived from various GCMexperiments and the adopted impact assessment models areexplained.The CIRFs presented here consider climate change impacts onnatural vegetation, crop production, and water availability. Theyare part of the ICLIPS integrated assessment framework based onthe tolerable windows approach. CIRFs can be applied both in`forward' and in `inverse' mode. In the latter, they help totranslate thresholds for climate impacts perceived by stakeholders(so-called impact guardrails) into constraints for climatevariables (so-called climate windows). This enables the results ofdetailed impact models to be incorporated into intertemporallyoptimizing integrated assessment models, such as the ICLIPS model.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alcamo, J., Kreileman, E., Krol, M., Leemans, R., Bollen, J., van Minnen, J., Schaeffer, M., Toet, S., and de Vries, B.: 1998, ‘Global Modelling of Environmental Change: An Overview of IMAGE 2.1’, in Alcamo, J., Leemans, R., and Kreileman, E. (eds.), Global Change Scenarios of the 21st Century. Results from the IMAGE 2.1 Model, Pergamon, Oxford, pp. 3–94.Google Scholar
  2. Bacher, A., Oberhuber, J. M., and Roeckner, E.: 1998, ‘ENSO Dynamics and Seasonal Cycle in the Tropical Pacific as Simulated by the ECHAM4/OPYC3 Coupled General Circulation Model’, Clim. Dyn. 14, 431–450.Google Scholar
  3. Batjes, N. H.: 1996, ‘Development of a World Data Set of Soil Water Retention Properties Using Pedotransfer Rules’, Geoderma 71, 31–52.Google Scholar
  4. Bergström, S.: 1995, ‘The HBV Model’, in Singh, V. P. (ed.), Computer Models of Watershed Hydrology, Water Resources Publications, Highlands Ranch, CO, pp. 443-476.Google Scholar
  5. Bruckner, T., Hooss, G., Füssel, H.-M., and Hasselmann, K.: 2003b, ‘Climate System Modeling in the Framework of the TolerableWindows Approach: The ICLIPS ClimateModel’, Clim. Change, this issue.Google Scholar
  6. Bruckner, T., Petschel-Held, G., Leimbach, M., and Toth, F. L.: 2003a, ‘Methodological Aspects of the Tolerable Windows Approach’, Clim. Change, this issue.Google Scholar
  7. Bruckner, T., Petschel-Held, G., Toth, F. L., Füssel, H.-M., Helm, C., Leimbach, M., and Schellnhuber, H.-J.: 1999, ‘Climate Change Decision-support and the Tolerable Windows Approach’, Environ. Model. Assess. 4, 217–234.Google Scholar
  8. Carter, T. R., Parry, M. L., Harasawa, H., and Nishioka, S.: 1994, IPCC Technical Guidelines for Assessing Climate Change Impacts and Adaptations, Part of the IPCC Special Report to the First Session of the Conference of the Parties to the UN Framework Convention on Climate Change, Department of Geography, University College London, London, U.K.Google Scholar
  9. Dai, A., Meehl, G. A., Washington, W. M., Wigley, T. L., and Arblaster, J. M.: 2001, ‘Ensemble Simulation of Twenty-First Century Climate Changes: Business-as-Usual versus CO2 Stabilization’, Bull. Amer. Meteorol. Soc. 82, 2377–2388.Google Scholar
  10. de Wit, C. T.: 1978, Simulation of Assimilation, Respiration and Transpiration of Crops, Simulation Monographs, PUDOC, Wageningen, The Netherlands.Google Scholar
  11. Döll, P., Kaspar, F., and Alcamo, J.: 1999, ‘Computation of Global Water Availability and Water Use at the Scale of Large Drainage Basins’, Mathematische Geologie 4, 111–118.Google Scholar
  12. FAO: 1981, Report on the Agro-ecological Zones Project. Vol. 3: Methodology and Results for South and Central America, World Soil Resources Report 48, Food and Agriculture Organization of the United Nations, Rome, Italy.Google Scholar
  13. FAO: 1988, FAO/UNESCO Soil Map of the World. Revised Legend, World Soil Resources Report 60, Food and Agriculture Organization of the United Nations, Rome, Italy.Google Scholar
  14. Foley, J. A., Prentice, I. C., Ramankutty, N., Levis, S., Pollard, D., Sitch, S., and Haxeltine, A.: 1996, ‘An Integrated Biosphere Model of Land Surface Processes, Terrestrial Carbon Balance, and Vegetation Dynamics’, Global Biogeochem. Cycles 10, 603–628.Google Scholar
  15. Füssel, H.-M.: 2002, ‘The ICLIPS Impact Tool: A Graphical User Interface to Climate Impact Response Functions for Integrated Assessment of Climate Change’, Integrated Assessment, forthcoming.Google Scholar
  16. Füssel, H.-M. and van Minnen, J. G.: 2001, ‘Climate Impact Response Functions for the Preservation of Terrestrial Ecosystems’, Integrated Assess. 2, 183–197.Google Scholar
  17. Grabs, W., de Couet, T., and Pauler, J.: 1996, Freshwater Fluxes from Continents into the World Oceans Based on Data of the Global Runoff Data Base, GRDC Report 10, Global Runoff Data Centre, Federal Institute of Hydrology, Koblenz, Germany.Google Scholar
  18. Henderson-Sellers, A.: 1996, ‘Can We Integrate Climatic Modelling and Assessment?’, Environ. Model. Assess. 1, 59–70.Google Scholar
  19. Huntley, B., Berry, P. M., Cramer, W., and McDonald, A. P.: 1995, ‘Modelling Present and Potential Future Ranges of Some European Higher Plants Using Climate Response Surfaces’, J. Biogeogr. 22, 967–1001.Google Scholar
  20. IPCC (Intergovernmental Panel on Climate Change): 2000, Special Report on Emissions Scenarios, Cambridge University Press, Cambridge, U.K.Google Scholar
  21. IUCN: 1998, 1997 United Nations List of Protected Areas, World Conservation Union (IUCN), Gland, Switzerland.Google Scholar
  22. Johns, T. C., Carnell, R. E., Crossley, J. F., Gregory, J. M., Mitchell, J. F. B., Senior, C. A., Tett, S. F. B., and Wood, R. A.: 1997, ‘The Second Hadley Centre Coupled Ocean-atmosphere GCM: Model Description, Spinup and Validation’, Clim. Dyn. 13, 103–134.Google Scholar
  23. Jones, T. H., Thompson, L. J., Lawton, J. H., Bezemer, T. M., Bardgett, R. D., Blackburn, T. M., Bruce, K. D., Cannon, P. F., Hall, G. S., Hartley, S. E., Howson, G., Jones, C. G., Kampichler, C., Kandeler, E., and Ritchie, D. A.: 1998, ‘Impacts of Rising Atmospheric Carbon Dioxide on Model Terrestrial Ecosystems’, Science 280, 441–443.Google Scholar
  24. Kirilenko, A. P. and Solomon, A. M.: 1998, ‘Modeling Dynamic Vegetation Response to Rapid Climate Change Using Bioclimatic Classification’, Clim. Change 38, 15–49.Google Scholar
  25. Klein Goldewijk, K., van Minnen, J. G., Kreileman, G. J. J., Vloedbeld, M., and Leemans, R.: 1994, ‘Simulating the Carbon Flux between the Terrestrial Environment and the Atmosphere’, Water Air Soil Pollut. 76, 199–230.Google Scholar
  26. Leemans, R. and Hootsmans, R.: 1998, Ecosystem Vulnerability and Climate Protection Goals, Report No. 481508004, RIVM, Bilthoven, The Netherlands.Google Scholar
  27. Leemans, R. and van den Born, G.: 1994, ‘Determining the Potential Global Distribution of Natural Vegetation, Crops and Agricultural Productivity’, Water Air Soil Pollut. 76, 133–162.Google Scholar
  28. Martin, P. H.: 1996, ‘Will Forest Preserves Protect Temperate and Boreal Biodiversity from Climate Change?’, Forest Ecol. Manage. 85, 335–341.Google Scholar
  29. Mendelsohn, R., Schlesinger, M., and Williams, L.: 2000, ‘Comparing Impacts across Climate Models’, Integrated Assess. 1, 37–48.Google Scholar
  30. Mitchell, J. F. B., Johns, T. C., Eagles, M., Ingram, W. J., and Davis, R. A.: 1999, ‘Towards the Construction of Climate Change Scenarios’, Clim. Change 41, 547–581.Google Scholar
  31. Mitchell, J. F. B., Johns, T. C., Ingram, W. J., and Lowe, J. A.: 2000, ‘The Effect of Stabilising Atmospheric Carbon Dioxide Concentrations on Global and Regional Climate Change’, Geophys. Res. Lett. 27, 2977–2980.Google Scholar
  32. New, M., Hulme, M., and Jones, P.: 1999, ‘Representing Twentieth Century Space-time Climate Variability. Part I: Development of a 1961-1990 Mean Monthly Terrestrial Climatology’, J. Climate 12, 829–856.Google Scholar
  33. Nordhaus, W. D.: 1994, Managing the Global Commons: The Economics of Climate Change, MIT Press, Cambridge, MA.Google Scholar
  34. Nordhaus, W. D. and Boyer, J.: 2000, Warming the World: Economic Models of Global Warming, MIT Press, Cambridge, MA.Google Scholar
  35. Petschel-Held, G., Schellnhuber, H.-J., Bruckner, T., Toth, F. L., and Hasselmann, K.: 1999, ‘The Tolerable Windows Approach: Theoretical and Methodological Foundations’, Clim. Change 41, 303–331.Google Scholar
  36. Prentice, I. C., Cramer, W., Harrison, S. P., Leemans, R., Monserud, R. A., and Solomon, A. M.: 1992, ‘A Global Biome Model Based on Plant Physiology and Dominance, Soil Properties and Climate’, J. Biogeogr. 19, 117–134.Google Scholar
  37. Ramankutty, N. and Foley, J.: 1998, ‘Characterizing Patterns of Global Land Use: An Analysis of Global Croplands Data’, Global Biogeochem. Cycles 12, 667–685.Google Scholar
  38. Robock, A., Turco, R. P., Harwell, M. A., Ackerman, T. P., Andressen, R., Chang, H.-S., and Sivakumar, M. V. K.: 1993, ‘Use of GCM Output for Impact Analysis’, Clim. Change 23, 293–335.Google Scholar
  39. Roeckner, E., Arpe, K., Bengtsson, L., Christoph, M., Claussen, M., Dümenil, L., Esch, M., Giorgetta, M., Schlese, U., and Schulzweida, U.: 1996, The Atmospheric General Circulation Model ECHAM-4: Model Description and Simulation of Present Day Climate, Report No. 218, Max Planck Institute for Meteorology, Hamburg, Germany.Google Scholar
  40. Santer, B. D., Wigley, T. M. L., Schlesinger, M. E., and Mitchell, J. F. B.: 1990, Developing Climate Scenarios from Equilibrium GCM Results, Report No. 47, Max Planck Institute for Meteorology, Hamburg, Germany.Google Scholar
  41. Smith, J. B. and Pitts, G. J.: 1997, ‘Regional Climate Change Scenarios for Vulnerability and Adaptation Assessments’, Clim. Change 36, 3–21.Google Scholar
  42. Tol, R. S. J.: 1996, ‘The Damage Costs of Climate Change Towards a Dynamic Representation’, Ecol. Econom. 19, 67–90.Google Scholar
  43. Tol, R. S. J.: 1999a, New Estimates of the Damage Costs of Climate Change, Part I: Benchmark Estimates, Working Paper D99/01, Institute for Environmental Studies, Vrije Universiteit, Amsterdam, The Netherlands.Google Scholar
  44. Tol, R. S. J.: 1999b, New Estimates of the Damage Costs of Climate Change, Part II: Dynamic Estimates,Working Paper D99/02, Institute for Environmental Studies, Vrije Universiteit, Amsterdam, The Netherlands.Google Scholar
  45. Toth, F. L.: 1996, ‘Ecological Damage Functions’, Paper presented at the Workshop on Climate Change: Integrating Science, Economics, and Policy, International Institute for Applied Systems Analysis, Laxenburg, Austria.Google Scholar
  46. Toth, F. L., Bruckner, T., Füssel, H.-M., Leimbach, M., and Petschel-Held, G.: 2003, ‘Integrated Assessment of Long-term Climate Policies: Part 1-Model Presentation’, Clim. Change, this issue.Google Scholar
  47. Toth, F. L., Cramer, W., and Hizsnyik, E.: 2000, ‘Climate Impact Response Functions: An Introduction’, Clim. Change 46, 225–246.Google Scholar
  48. van Minnen, J. G., Alcamo, J., and Haupt, W.: 2000, ‘Deriving and Applying Response Surface Diagrams for Evaluating Climate Change Impacts on Crop Production’, Clim. Change 46, 317–338.Google Scholar
  49. Villers-Ruíz, L. and Trejo-Vázquez, I.: 1998, ‘Climate Change on Mexican Forests and Natural Protected Areas’, Global Environ. Change 8, 141–157.Google Scholar
  50. von Storch, H.: 1995, ‘Inconsistencies at the Interface of Climate Impact Studies and Global Climate Research’, Meteorologische Zeitschrift 4, 72–80.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • H.-M. Füssel
    • 1
  • F. L. Toth
    • 1
  • J. G. van Minnen
    • 2
  • F. Kaspar
    • 3
  1. 1.Potsdam Institute for Climate Impact Research, TelegrafenbergPotsdamGermany
  2. 2.Department for Environmental AssessmentNational Institute of Public Health and the EnvironmentBilthovenThe Netherlands
  3. 3.Max Planck Institute for MeteorologyHamburgGermany

Personalised recommendations