Aquatic Geochemistry

, Volume 8, Issue 2, pp 75–95 | Cite as

Strontium Isotopic Signatures of the Streams and Lakes of Taylor Valley, Southern Victoria Land, Antarctica: Chemical Weathering in a Polar Climate

  • W. B. Lyons
  • Carmen A. Nezat
  • Larry V. Benson
  • Thomas D. Bullen
  • Elizabeth Y. Graham
  • Jesicca Kidd
  • Kathleen A. Welch
  • James M. Thomas


We have collected and analyzed a series of water samples from three closed-basin lakes (Lakes Bonney, Fryxell, and Hoare) in Taylor Valley, Antarctica, and the streams that flow into them. In all three lakes, the hypolimnetic waters have different 87Sr/86Sr ratios than the surface waters, with the deep water of Lakes Fryxell and Hoare being less radiogenic than the surface waters. The opposite occurs in Lake Bonney. The Lake Fryxell isotopic ratios are lower than modern-day ocean water and most of the whole-rock ratios of the surrounding geologic materials. A conceivable source of Sr to the system could be either the Cenozoic volcanic rocks that make up a small portion of the till deposited in the valley during the Last Glacial Maximum or from marble derived from the local basement rocks. The more radiogenic ratios from Lake Bonney originate from ancient salt deposits that flow into the lake from Taylor Glacier and the weathering of minerals with more radiogenic Sr isotopic ratios within the tills. The Sr isotopic data from the streams and lakes of Taylor Valley strongly support the notion documented by previous investigators that chemical weathering has been, and is currently, a major process in determining the overall aquatic chemistry of these lakes in this polar desert environment.


Strontium Isotopic Ratio Weathering Salt Deposit Chemical Weathering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allibone, A. H., Cox, S. C., Grahma, I. J., Smillie, R. W., Johnstone, R. D., Ellery, S. G. and Palmer, K. (1993) Granitoids of the Dry Valleys area, southern Victoria Land, Antarctica: plutons, field relationships, and isotopic dating, N. Z. J. Geol. Geophys. 36, 281–297.Google Scholar
  2. Anderson, S. P., Drever, J. I. and Humphrey, N. F. (1997) Chemical weathering in glacial environments, Geol. 25, 399–402.Google Scholar
  3. Angino, E. E. and Armitage, K. B. (1963) A geochemical study of Lakes Bonney and Vanda, Victoria Land, Antarctica, J. Geol. 71, 89–95.Google Scholar
  4. Black, R. F., Jackson, M. L. and Berg, T. E. (1965) Saline discharge from Taylor Glacier, Victoria Land, Antarctica, J. Geol. 74, 175–181.Google Scholar
  5. Borg, S. G., Stump, E., Chappell, B. W., McCulloch, M. T., Wyborn, D., Armstrong, R. L. and Holloway, J. R. (1987) Granitoids of northern Victoria Land, Antarctica: Implications of chemical and isotopic variations to regional crustal structure and tectonics, Am. J. Sci. 287, 127–169.Google Scholar
  6. Bullen, T. D., Krabenhoft, D. P. and Kendall, C. (1996) Kinetic and mineralogic controls on the evolution of groundwater chemistry and 87Sr/86Sr in a sandy silicate aquifer, northernWisconsin, USA, Geochim. Cosmochim. Acta 60, 1807–1821.Google Scholar
  7. Burke, W. H., Denison, R. E., Hetherington, E. A., Koepuick, R. B., Nelson, H. F. and Otto, J. B. (1982) Variation of seawater 87Sr/86Sr throughout Phanerozoic time, Geol. 10, 516–519.Google Scholar
  8. Conovitz, P. A., McKnight, D. M., MacDonald, L. H., Fountain, A. G. and House, H. R. (1998) Hydrologic processes influencing streamflow variation in Fryxell Basin, Antarctica,. In: Ecosystem dynamics in a polar desert: The McMurdo Dry Valleys, Antarctica (ed. J. C. Priscu), Vol. 72, pp. 93–108. American Geophysical Union, Antarctica Research Series.Google Scholar
  9. DeVilliers, S. (1999) Seawater strontium and Sr/Ca variability in the Atlantic and Pacific oceans, Earth Planet. Sci. Lett. 171, 623–634.Google Scholar
  10. Faure, G. and Barrett, R. P. (1973) Strontium isotope compositions of non-marine carbonate rocks from the Beacon Supergroup of the Transantarctic Mountains, J. Sediment. Petrol. 43, 447–457.Google Scholar
  11. Faure, G. and Felder, R. P. (1981) Isotopic composition of strontium and sulfur in secondary gypsum crystals, Brown Hills, Transantarctic Mountains, J. Geochem. Explor. 14, 265–270.Google Scholar
  12. Faure, G., Jones, L. M. and Owen, L. B. (1974) Isotopic composition of strontium and geologic history of the basement rocks of Wright Valley, southern Victoria Land, Antarctica, N. Z. Jour. Geol. Geophys. 17, 611–627.Google Scholar
  13. Friedman, I., Rafler, A. and Smith, G. I. (1995) A thermal, isotopic, and chemical study of Lake Vanda and Don Juan Pond, Antarctica, In: Contributions to Antarctic Research IV, Vol. 67, pp. 47–74. American Geophysical Union, Antarctic Research Series.Google Scholar
  14. Gibbs, M. T. and Kump, L. R. (1994) Global chemical erosion during the last glacial maximum and the present: Sensitivity to changes in lithology and hydrology, Paleoceanogr. 9, 529–543.Google Scholar
  15. Green, W. J., Angle, M. P. and Chave, K. E. (1988) The geochemistry of Antarctic streams and their role in the evolution of four lakes of the McMurdo Dry Valleys, Geochim. Cosmochim. Acta 52, 1265–1274.Google Scholar
  16. Hall, B. L., Denton, G. H. and Hendy, C. H. (2000) Evidence from Taylor Valley for a grounded ice sheet in the western Ross Sea, Antarctica, Geograf. Ann. 82A, 275–303.Google Scholar
  17. Hart, S. R. and Kyle, P. R. (1993) Geochemistry of McMurdo Group volcanic rocks, Antarctic J. of U. S. 28(5), 14–16.Google Scholar
  18. Hinkley, T., Pertsiger, F. and Zavjalova, L. (1997) The modern atmospheric background dust load: recognition in Central Asian snowpack, and compositional constraints, Geophys. Res. Lett. 24, 1607–1610.Google Scholar
  19. Hodell, D. A., Mueller, P. A. and Garriod, J. R. (1991) Variations in the strontium isotopic composition of seawater during the Neogene, Geol. 19, 24–27.Google Scholar
  20. Hodgkins, R., Tranter, M. and Dowdeswell, J. A. (1997) Solute provenance, transport and denudation in a high arctic glacierized catchment, Hydrological Processes 11, 1813–1832.Google Scholar
  21. Hodgkins, R., Tranter, M. and Dowdeswell, J. A. (1998) The hydrochemistry of runoff from a 'coldbased' glacier in the High Arctic (Scott Turnerbreen, Svalbard), Hydrological Processes 12, 87–103.Google Scholar
  22. Jones, L. M. and Faure, G. (1967) Origin of the salts in Lake Vanda,Wright Valley, southern Victoria Land, Antarctica, Earth Planet. Sci. Lettr. 3, 101–106.Google Scholar
  23. Jones, L. M. and Faure, G. (1978) A study of strontium isotopes in lakes and surficial sediments of the ice-free valleys, southern Victoria Land, Antarctica, Chem. Geol. 22, 107–120.Google Scholar
  24. Keys, J. R. and Williams, K. (1981) Origin of crystalline, cold desert salts in the McMurdo region, Antarctica, Geochim. Cosmochim. Acta 45, 2299–2309.Google Scholar
  25. Lyons, W. B., Tyler, S. W., Wharton, Jr., R. A., Vaughn, B. and McKnight, D. M. (1998b) A late Holocene desiccation of Lake Hoare and Lake Fryxell, McMurdo Dry Valleys, Antarctica, Antarctic Sci. 10, 245–254.Google Scholar
  26. Lyons, W. B., Welch, K. A., Neumann, K., Toxey, J. K., McArthur, R., Williams, C., McKnight, D. M. and Moorhead, D. (1998a) Geochemical linkages among glaciers, streams and lakes within the Taylor Valley, Antarctica, In: Ecosystem dynamics in a polar desert: The McMurdo Dry Valleys, Antarctica (ed. J. C. Priscu), Vol 72, pp. 77–92. American Geophysical Union, Antarctica Research Series.Google Scholar
  27. Lyons, W. B., Welch, K. A., Nezat, C. A., Crick, K., Toxey, J. K. and Mastrine, J. A. (1997) Chemical weathering rates and reactions in the Lake Fryxell Basin, Taylor Valley: Comparison to temperate river basins, In: Ecosystem Processes in Antarctic Ice-Free Landscapes (eds. W. B. Lyons, C. Howard-Williams, and I. Hawes), pp. 147–154. Balkema.Google Scholar
  28. Lyons, W. B., Welch, K. A. and Sharma, P. (1998c) Chlorine-36 in the waters of the McMurdo Dry Valley lakes, southern Victoria Land, Antarctica: Revisited, Geochimica et Cosmochimica Acta 62, 185–191.Google Scholar
  29. Marchant, D. R., Denton, G. H. and Swisher, III, C. C. (1993) Miocene-Pliocene-Pleistocene glacial history of Arena Valley, Quatermain Mountains, Antarctica, Geografiska Ann. 75A, 269–300.Google Scholar
  30. Matsubaya, O., Sakai, H., Torii, T., Burton, H. and Kerry, K. (1979) Antarctic saline lakes-stable isotopic ratios, chemical compositions and evolution, Geochim. Cosmochim. Acta 43, 7–25.Google Scholar
  31. Maurice, P. A., McKnight, D. M., Leff, L., Fulghum, J. E. and Gooseff, M. (2002) Direct observations of aluminosilicate weathering in the hyporheic zone of an Antarctic dry valley stream, Geochim. Cosmochim. Acta. 66, 1335–1347.Google Scholar
  32. Munhoven, G. and Francois, L. M. (1994) Glacial-interglacial changes in continental weathering: Possible implications for atmospheric CO2, In: Carbon cycling in the glacial ocean: Constraints on the ocean's role in global change (eds. R. Zahn et al.), pp. 39–58. Springer Verlag.Google Scholar
  33. Nezat, C. A., Lyons, W. B. and Welch, K. A. (2001) Chemical weathering in Taylor Valley streams, Antarctica, Geol. Soc. Am. Bull. 113, 1401–1408.Google Scholar
  34. Palmer, M. R. and Edmond, J. M. (1989) The strontium isotope budget of the modern ocean, Earth Planet. Sci. Lett. 92, 11–26.Google Scholar
  35. Porter, S. C. and Beget, J. E. (1981) Provenance and depositional environments of late Cenozoic sediments in permafrost cores from lower Taylor Valley, Antarctica, In: Dry Valley Drilling Project (ed. L. D. McGinnis), pp. 351–364. American Geophysical Union.Google Scholar
  36. Prentice, M. L., Bockheim, J. G., Wilson, S. C., Burckle, L. H., Hodell, D. A., Schlüchter, C. and Kellogg, D. E. (1993) Late Neogene Antarctic glacial history: Evidence from central Wright Valley, In: The Antarctic Paleoenvironment: A Perspective on Global Change (ed. S. C. Wilson), pp. 207–250. American Geophysical Union.Google Scholar
  37. Rimstidt, J. D., Balog, A. and Webb, J. (1998) Distribution of trace elements between carbonate minerals and aqueous solutions, Geochim. Cosmochim. Acta 62, 1851–1863.Google Scholar
  38. Spigel, R. H. and Priscu, J. C. (1998) Physical limnology of the McMurdo Dry Valleys lakes, In: Ecosystem dynamics in a polar desert: The McMurdo Dry Valleys, Antarctica (ed. J. C. Priscu), Vol 72, pp. 153–187. American Geophysical Union, Antarctica Research Series.Google Scholar
  39. Wedepohl, K. H. (1995) The composition of the continental crust, Geochim. Cosmochem. Acta 59, 1217–1232.Google Scholar
  40. Welch, K. A., Lyons, W. B., Graham, E., Neumann, K., Thomas, J. M. and Mikesell, D. (1996) Determination of major element chemistry in terrestrial waters from Antarctica by ion chromatography, J. Chromatogr. A. 739, 257–263.Google Scholar
  41. Wilch, T. I., Lux, D. R., Denton, G. H. and McIntosh, W. C. (1993) Minimal Pliocene-Pleistocene uplift of the dry valleys sector of the Transantarctic Mountains: A key parameter in ice-sheet reconstructions, Geol. 21, 841–844.Google Scholar
  42. Wright, A. C. and Kyle, P. R. (1990) Taylor and Wright Valleys, In: Volcanoes of the Antarctic plate and southern oceans (eds. W. E. LeMasurier and J. W. Thomson), pp. 134–145. American Geophysical Union.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • W. B. Lyons
    • 1
  • Carmen A. Nezat
    • 1
  • Larry V. Benson
    • 2
  • Thomas D. Bullen
    • 3
  • Elizabeth Y. Graham
    • 4
  • Jesicca Kidd
    • 4
  • Kathleen A. Welch
    • 1
  • James M. Thomas
    • 5
  1. 1.Byrd Polar Research CenterThe Ohio State UniversityColumbus
  2. 2.U.S. Geological SurveyBoulder
  3. 3.U.S. Geological SurveyMenlo Park
  4. 4.Department of Geological SciencesUniversity of AlabamaTuscaloosa
  5. 5.Desert Research InstituteReno

Personalised recommendations