Theoretical and Mathematical Physics

, Volume 133, Issue 3, pp 1730–1743 | Cite as

Commutative Poisson Subalgebras for Sklyanin Brackets and Deformations of Some Known Integrable Models

  • V. V. Sokolov
  • A. V. Tsiganov


We construct hierarchies of commutative Poisson subalgebras for Sklyanin brackets. Each of the subalgebras is generated by a complete set of integrals in involution. Some new integrable systems and schemes for separation of variables for them are elaborated using various well-known representations of the brackets. The constructed models include deformations for the Goryachev–Chaplygin top, the Toda chain, and the Heisenberg model.

finite-dimensional integrable systems Lax representation r-matrix algebras separation of variables 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. K. Sklyanin, Zap. Nauchn. Sem. LOMI, 133, 236 (1984).Google Scholar
  2. 2.
    E. K. Sklyanin, Progr. Theor.Phys., 118, 35 (1995).Google Scholar
  3. 3.
    V. B. Kuznetsov and A. V. Tsiganov, J. Phys., 22, L73 (1989).Google Scholar
  4. 4.
    V. V. Sokolov and A. V. Tsiganov, Theor. Math. Phys., 131, 543 (2002).Google Scholar
  5. 5.
    V. I. Inozemtsev, Comm. Math. Phys., 121, 629 (1989).Google Scholar
  6. 6.
    E. K. Sklyanin, J. Phys. A, 21, 2375 (1988).Google Scholar
  7. 7.
    P. Stäckel, Über die integration der Hamilton–Jacobischen differentialgeichung mittels separation der variabeln, Habilitationschrift, Halle (1891); L. A. Pars, Amer.Math.Monthly, 56, 394 (1949).Google Scholar
  8. 8.
    A. V. Tsiganov, J. Math. Phys., 38, 196 (1997).Google Scholar
  9. 9.
    E. K. Sklyanin, “The quantum Toda chain,” in: Nonlinear Equations in Classical and Quantum Field Theory (Proc. Seminar, Meudon/Paris, 1983/1984, Lect. Notes Phys., Vol. 226, N. Sanchez, ed.), Springer, Berlin (1985), p. 196.Google Scholar
  10. 10.
    A. V. Tsiganov, J. Phys. A, 31, 8049 (1998).Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • V. V. Sokolov
    • 1
  • A. V. Tsiganov
    • 2
  1. 1.Landau Institute of Theoretical PhysicsMoscowRussia
  2. 2.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations