Studia Logica

, Volume 72, Issue 2, pp 199–232

A Tableau Decision Algorithm for Modalized ALC with Constant Domains

  • Carsten Lutz
  • Holger Sturm
  • Frank Wolter
  • Michael Zakharyaschev
Article

Abstract

The aim of this paper is to construct a tableau decision algorithm for the modal description logic KALC with constant domains. More precisely, we present a tableau procedure that is capable of deciding, given an ALC-formula ϕ with extra modal operators (which are applied only to concepts and TBox axioms, but not to roles), whether ϕ is satisfiable in a model with constant domains and arbitrary accessibility relations. Tableau-based algorithms have been shown to be 'practical' even for logics of rather high complexity. This gives us grounds to believe that, although the satisfiability problem for KALC is known to be NEXPTIME-complete, by providing a tableau decision algorithm we demonstrate that highly expressive description logics with modal operators have a chance to be implementable. The paper gives a solution to an open problem of Baader and Laux [5].

modal logics description logics tableaux combining systems decidability complexity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Artale, A., and E. Franconi, 'A temporal description logic for reasoning about actions and plans', Journal of Artificial Intelligence Research (JAIR) 9, 1998.Google Scholar
  2. [2]
    Artale, A., and C. Lutz, 'A correspondence between temporal description logics', in Proceedings of DL-99 (eds.: P. Lambrix, A. Borgida, M. Lenzerini, R. Möller, P. Patel-Schneider), CEUR-WS, 1999, pp. 145-149.Google Scholar
  3. [3]
    Baader, F., M. Buchheit, and B. Hollunder, 'Cardinality restrictions on concepts', Artificial Intelligence 88:195-213, 1996.Google Scholar
  4. [4]
    Baader, F., and P. Hanschke, 'A scheme for integrating concrete domains into concept languages', in Proceedings of IJCAI-91 (eds.: J. Mylopoulos, R. Reiter), Morgan Kaufmann, pp. 452-457, 1991.Google Scholar
  5. [5]
    Baader, F., and A. Laux, 'Terminological logics with modal operators', in Proceedings of the 14th International Joint Conference on Artificial Intelligence (ed.: C. Mellish), Morgan Kaufmann, 1995, pp. 808-814.Google Scholar
  6. [6]
    Baader, F., and H.-J. Ohlbach, 'A multi-dimensional terminological knowledge representation language', Journal of Applied Non-Classical Logics 5:153-197, 1995.Google Scholar
  7. [7]
    Calvanese, D., G. De Giacomo, and M. Lenzerini, 'Reasoning in expressive description logics with fixpoints based on automata on infinite trees', in Proceedings of IJCAI-99 (ed.: T. Dean), 1999, pp. 84-89.Google Scholar
  8. [8]
    De Giacomo, G., and M. Lenzerini, 'TBox and ABox reasoning in expressive description logics', in Proceedings of KR-96, Morgan Kaufmann, 1996, pp. 316-327.Google Scholar
  9. [9]
    Devanbu, P. T., and D. J. Litman, 'Taxonomic plan reasoning', Artificial Intelligence 84:1-35, 1996.Google Scholar
  10. [10]
    Donini, F. M., M. Lenzerini, D. Nardi, and A. Schaerf, 'Adding epistemic-operators to concept languages', in Proceedings of the 3rd International Conference on Principles of Knowledge Representation and Reasoning (eds.: W. Nebel, B. Rich, C. Swartout), Morgan Kaufmann, 1992, pp. 342-356.Google Scholar
  11. [11]
    Donini, F. M., M. Lenzerini, D. Nardi, and A. Schaerf, 'Reasoning in description logics', in Foundation of Knowledge Representation (ed.: G. Brewka), CSLI Publications, 1996, pp. 191-236.Google Scholar
  12. [12]
    Fagin, R., J. Halpern, Y. Moses, and M. Vardi, Reasoning About Knowledge, MIT Press, 1995.Google Scholar
  13. [13]
    Gabbay, D., and V. Shehtman, 'Products of modal logics, part I', Logic Journal of the IGPL 6:73-146, 1998.Google Scholar
  14. [14]
    Haarslev, V., and R. MÖller, 'An empirical evaluation of optimization strategies for ABox reasoning in expressive description logics', in Proceedings of DL-99 (eds.: P. Lambrix, A. Borgida, M. Lenzerini, R. Möller, P. Patel-Schneider), CEUR-WS, 1999, pp. 115-119.Google Scholar
  15. [15]
    Haarslev, V., and R. MÖller, 'RACE system description' in Proceedings of DL-99 (eds.: P. Lambrix, A. Borgida, M. Lenzerini, R. Möller, P. Patel-Schneider), CEUR-WS, 1999, pp. 140-141.Google Scholar
  16. [16]
    Hodkinson, I., F. Wolter, and M. Zakharyaschev, 'Decidable fragments of first-order temporal logics', Annals of Pure and Applied Logic 106:85-134, 2000.Google Scholar
  17. [17]
    Hollunder, B., and W. Nutt, 'Subsumption algorithms for concept languages', DFKI Research Report RR-90-04, Deutsches Forschungszentrum für Künstliche Intelligenz, Kaiserslautern, 1990.Google Scholar
  18. [18]
    Horrocks, I., 'Optimising tableaux decision procedures for description logics', PhD thesis, University of Manchester, 1997.Google Scholar
  19. [19]
    Horrocks, I., 'Using an expressive description logic: fact or fiction?', in Proceedings of KR-98 (eds.: A. Cohn, L. Schubert, S. C. Shapiro), Morgan Kaufmann, 1998, pp. 636-647.Google Scholar
  20. [20]
    Horrocks, I., 'FaCT and iFaCT', in Proceedings of DL-99 (eds.: P. Lambrix, A. Borgida, M. Lenzerini, R. Möller, P. Patel-Schneider), CEUR-WS, 1999, pp. 133-135.Google Scholar
  21. [21]
    Horrocks, I., P. Patel-Schneider, and R. Sebastiani, 'An analysis of empirical testing for modal decision procedures', Logic Journal of the IGPL 8:293-323, 2000.Google Scholar
  22. [22]
    Horrocks, I., and U. Sattler, 'A description logic with transitive and inverse roles and role hierarchies', Journal of Logic and Computation 9(3), 1999.Google Scholar
  23. [23]
    Horrocks, I., U. Sattler, and S. Tobies, 'Practical reasoning for expressive description logics', in Proceedings of LPAR-99 (eds.: H. Ganzinger, D. McAllester, A. Voronkov), Lecture Notes in Artificial Intelligence 1705, Springer-Verlag, 1999, pp. 161-180.Google Scholar
  24. [24]
    Hughes, G., and M. Cresswell, A New Introduction to Modal Logic, Methuen, London, 1996.Google Scholar
  25. [25]
    Hustadt, U., and R. A. Schmidt, 'Issues of decidability for description logics in the framework of resolution', in Automated Deduction in Classical and Non-classical Logic (eds.: R. Caterra, G. Salzer), Lecture Notes in Artificial Intelligence 1761, Springer-Verlag, 1996, pp. 191-205.Google Scholar
  26. [26]
    Lutz, C., H. Sturm, F. Wolter, and M. Zakharyaschev, 'Tableaux for temporal description logic with constant domain', in Proceedings of IJCAR-2001 (eds.: R. Gore, A. Leitsch, T. Nipkow), Siena, Italy, 2001, pp. 121-136, LNAI no. 2083.Google Scholar
  27. [27]
    Mosurovic, M., and M. Zakharyaschev, 'On the complexity of description logics with modal operators', in Proceedings of the 2nd Panhellenic Logic Symposion (eds.: P. Kolaitos, G. Koletos), Delphi, Greece, 1999, pp. 166-171.Google Scholar
  28. [28]
    Patel-Schneider, P., 'DLP', in Proceedings of DL-99 (eds.: P. Lambrix, A. Borgida, M. Lenzerini, R. Möller, P. Patel-Schneider), CEUR-WS, 1999, pp. 140-141.Google Scholar
  29. [29]
    Schild, K. D., 'A correspondence theory for terminological logics: preliminary report', in Proceedings of IJCAI-91, Sydney, Australia, 1991, pp. 466-471.Google Scholar
  30. [30]
    Schild, K. D., 'Combining terminological logics with tense logic', in Progress in Artificial Intelligence — 6th Portuguese Conference on Artificial Intelligence, EPIA-93 (eds.: M. Filgueiras, L. Damas), Lecture Notes in Artificial Intelligence, Springer-Verlag, 1993, pp. 105-120.Google Scholar
  31. [31]
    Schmidt-Schauss, M., and G. Smolka, 'Attributive concept descriptions with complements', Artificial Intelligence 48:1-26, 1991.Google Scholar
  32. [32]
    Sturm, H., and F. Wolter 'A tableau calculus for temporal description logic: the expanding domain case', Journal of Logic and Computation, to appear.Google Scholar
  33. [33]
    Van Benthem, J., 'Temporal logic', in Handbook of Logic in Artificial Intelligence and Logic Programming, Volume 4 (eds.: D. Gabbay, C. Hogger, J. Robinson), Oxford Scientific Publishers, 1996, pp. 241-350.Google Scholar
  34. [34]
    Wolter, F., 'The product of converse PDL and polymodal K', Journal of Logic and Computation 10:223-251, 2000.Google Scholar
  35. [35]
    Wolter, F., and M. Zakharyaschev, 'Satisfiability problem in description logics with modal operators', in Proceedings of KR-98 (eds.: A. G. Cohn, L. Schubert, S. C. Shapiro), Morgan Kaufmann, 1998, pp. 512-523.Google Scholar
  36. [36]
    Wolter, F., and M. Zakharyaschev, 'Modal description logics: modalizing roles'. Fundamenta Informaticae 39:411-438, 1999.Google Scholar
  37. [37]
    Wolter, F., and M. Zakharyaschev, 'Multi-dimensional description logics', in Proceedings of IJCAI-99, Volume 1 (ed.: D. Thomas), Morgan Kaufmann, 1999, pp. 104-109.Google Scholar
  38. [38]
    Wolter, F., and M. Zakharyaschev, 'Temporalizing description logic', in Frontiers of Combining Systems (eds.: D. Gabbay, M. de Rijke), Studies Press/Wiley, 1999, pp. 379-402.Google Scholar
  39. [39]
    Wolter, F., and M. Zakharyaschev, 'Dynamic description logic', In Advances in Modal Logic, Volume 2 (eds.: K. Segerberg, M. de Rijke, H. Wansing, M. Zakharyaschev), CSLI Publications, 2000, pp. 431-446.Google Scholar
  40. [40]
    Wolter, F., and M. Zakharyaschev, 'Decidable fragments of first-order modal logics', Journal of Symbolic Logic 66: 1415-1438, 2001.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Carsten Lutz
    • 1
  • Holger Sturm
    • 2
  • Frank Wolter
    • 2
  • Michael Zakharyaschev
    • 3
  1. 1.LuFG Theoretical Computer ScienceRWTH AachenAachenGermany
  2. 2.Institut für InformatikUniversität LeipzigLeipzigGermany
  3. 3.Department of Computer ScienceKing's CollegeStrand, LondonU.K.

Personalised recommendations