Optical and Quantum Electronics

, Volume 34, Issue 12, pp 1251–1266 | Cite as

Wavelength dependent damage in biological multi-photon confocal microscopy: A micro-spectroscopic comparison between femtosecond Ti:sapphire and Cr:forsterite laser sources

  • I.-H. Chen
  • S.-W. Chu
  • C.-K. Sun
  • P.-C. Cheng
  • B.-L. Lin

Abstract

Molecular excitation by the simultaneous absorption of two photons provides intrinsic three-dimensional resolution in laser scanning fluorescence microscopy. Thus induced two-photon absorption and the accompanied multi-photon absorption/ionization not only cause photo-bleaching but also cell damage in the vicinity of the focal point. In this paper, we study the wavelength dependent cell damage induced by high intensity femtosecond near infrared lasers. The study was performed with a Ti:sapphire laser and a Cr:forsterite laser. With a longer output wavelength from a Cr:forsterite laser, multi-photon absorption and auto-fluorescence were found to be significantly suppressed and the destructive plasma formation was found to be greatly reduced. Sustained multi-photon spectra can be observed in most plant specimens with a tightly focused Cr:forsterite laser beam under long term irradiation with more than 100 mW laser average power. In contrast, multi-photon absorption induced destructive plasma formation were frequently observed with a tightly focused Ti:sapphire laser beam within seconds with more than 10 mW laser average power.

cell damage Cr:forsterite laser multi-photon absorption plasma formation Ti:sapphire laser two-photon fluorescence microscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarie, S., W. Agata, H. Uchida, F. Kubota and P.B. Kaufman. Function of silica bodies in the epidermal system of rice (Oryza sativa L.): Testing the window hypothesis. J. Exp. Bot. 47 655, 1996.Google Scholar
  2. Anderson, R.R., S. Zaynoun and J.A. Parish. Cumulative effects of repeated subthreshold doses of ultraviolet radiation. J. Invest. Dermatol. 77 13, 1981.Google Scholar
  3. Barad, Y., H. Eisenberg, M. Horowitz and Y. Silberberg. Nonlinear scanning laser microscopy by third harmonic generation. Appl. Phys. Lett. 70 922, 1997.Google Scholar
  4. Cheng, P.C., F.-J. Kao, C.-K. Sun, B.-L. Lin, T.-M. Liu, Y.-S. Wang, M.-K. Huang, Y.-M. Wang, J.-C. Chen and I. Johnson. Multi-photon excited fluorescence spectra of common bio-probes. Scanning 22 187, 2000.Google Scholar
  5. Cheng, P.C., B.-L. Lin, F.-J. Kao, M. Gu, M.-G. Xu, X Gan, M.-K. Huang and Y.-S. Wang. Multiphoton fluorescence microscopy-the response of plant cells to high intensity illumination. Micron 32, 661, 2001.Google Scholar
  6. Cheng, P.C., S.J. Pan, A. Shih, K.-S. Kim, W.S. Liou and M.S. Park. Highly efficient upconverters for multiphoton fluorescence microscopy. J. Microsc. 189 199, 1998.Google Scholar
  7. Chu, S.-W., I.-H. Chen, T.-M. Liu, P.C. Cheng, C.-K. Sun and B.-L. Lin. Multimodal nonlinear spectral microscopy based on a femtosecond Cr:forsterite laser. Opt. Lett. 26 1909, 2001.Google Scholar
  8. Denk, W., J.H. Strickler and W.W. Webb. Two-photon laser scanning fluorescence microscopy. Science 248 73, 1990.Google Scholar
  9. Iwamoto, M., K.H. Norris and S. Kimura. Rapid prediction of chemical compositions for wheat, soybean, pork and fresh potatoes by near infrared spectrophotometric analysis. Nippon Shokuhin Kogyo Gakkaishi 28 85, 1981.Google Scholar
  10. Kennedy, S.M. and F.E. Lytle. p-Bis(io-methylstyryl)benzene as a power squared sensor for two-photon absorption measurment between 537 and 694 nm. Anal. Chem. 58 2643, 1986.Google Scholar
  11. König, K., H. Liang, M.W. Berns and B.J. Tromberg. Cell damage by near-IR microbeams. Nature 377 20, 1995.Google Scholar
  12. König, K., P.T.C. So, W.W. Mantulin and E. Gratton. Cellular response to near-infrared femtosecond laser pulses in two-photon microscopes. Opt. Lett. 22 135, 1997.Google Scholar
  13. Liu, T.-M., S.-P. Tai and C.-K. Sun. Intracavity frequency-doubled femtosecond Cr4+:forsterite laser. Appl. Opt. 40 1957, 2001a.Google Scholar
  14. Liu, T.-M., S.-H. Chu, C.-K. Sun, B.-L. Lin, P.C. Cheng and I. Johnson. Multiphoton confocal microscopy by using a femtosecond Cr:forsterite laser. Scanning 23 in press, 2001b.Google Scholar
  15. Seas, A., V. Petričević and R.R. Alfano. Generation of sub-100-fs pulses from a CW mode-locked chromium-doped forsterite laser. Opt. Lett. 17 937, 1992.Google Scholar
  16. Seas, A., V. Petričević and R.R Alfano. Self-mode-locked chromium-doped forsterite laser generates 50-fs pulses. Opt. Lett. 18 891, 1993.Google Scholar
  17. Sun, C.-K., S.-W. Chu, S.P. Tai, S. Keller, U.K. Mishra and S.P. DenBaars. Scanning second-harmonic/ third-harmonic generation microscopy of gallium nitride. Appl. Phys. Lett. 77 2331, 2000.Google Scholar
  18. Slobodchikov, E., J. Ma, V. Kamalov, K. Tominaga and K. Yoshihara. Cavity-dumped femtosecond Kerr-lens mode locking in a chromium-doped forsterite laser. Opt. Lett. 21 354, 1996.Google Scholar
  19. Squier, J.A., M. Müller, G.J. Brakenho. and K.R. Wilson. Third harmonic generation microscopy. Opt. Exp. 3 315, 1998.Google Scholar
  20. Stelzer, E.H.K., S. Hell, S. Lindek, R. Stricker, R. Pick, C. Storz, G. Ritter and N. Salmon. Nonlinear absorption extends confocal fluorescence microscopy into the ultra-violet regime and confines the illumination volume. Opt. Commun. 104 233, 1994.Google Scholar
  21. Zhang, Z., K. Torizuka, T. Itatani, K. Kobayashi, T. Sugaya and T. Nakagawa. Femtosecond Cr:forsterite laser with mode locking initiated by a quantum-well saturable absorber. IEEE. J. Quantum Electron. 33 1975, 1997.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • I.-H. Chen
    • 1
  • S.-W. Chu
    • 1
  • C.-K. Sun
    • 1
  • P.-C. Cheng
    • 1
  • B.-L. Lin
    • 3
  1. 1.Department of Electrical Engineering and Graduate Institute of Electro-Optical EngineeringNational Taiwan UniversityTaipeiTaiwan, ROC
  2. 2.Department of Electrical EngineeringState University of New YorkBuffaloUSA
  3. 3.Institute of Molecular BiologyAcademia SinicaTaipeiTaiwan, ROC

Personalised recommendations