Water, Air and Soil Pollution: Focus

, Volume 2, Issue 5–6, pp 1–16 | Cite as

Investigating the Surface Energy Balance in Urban Areas – Recent Advances and Future Needs

  • M. Piringer
  • C. S. B. Grimmond
  • S. M. Joffre
  • P. Mestayer
  • D. R. Middleton
  • M. W. Rotach
  • A. Baklanov
  • K. De Ridder
  • J. Ferreira
  • E. Guilloteau
  • A. Karppinen
  • A. Martilli
  • V. Masson
  • M. Tombrou
Article

Abstract

Recent advances in understanding of the surface energy balance of urban areas, based on both experimental investigations andnumerical models, are reviewed. Particular attention is directedto the outcome of a COST-715 Expert Meeting held in April 2000,as well as experiments initiated by that action. In addition, recentcomplete parameterisations of urban effects in meso-scalemodels are reviewed. Given that neither the surface energybalance, nor its components, normally are directly measuredat meteorological stations, nor are there guidelines for theset-up of representative meteorological stations in urbanareas, this paper also provides recommendations to closethese gaps.

COST-715 meso-scale models surface energybalance surface flux modelling urban boundary layer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnfield, A. J. and Grimmond, C. S.: 1998, ‘An urban canyon energy budget model and its application to urban storage heat flux modelling’, Ener. Build. 27, 61–68.Google Scholar
  2. Baklanov, A., Rasmussen, A., Fay, B., Berge, E. and Finardi, S.: 2001, ‘Potential and shortcomings of NWP models in providing meteorological data for UAP forecasting’, Ext. abstract to the Third Urban Air Quality Conference, Loutraki, Greece. CD-ROM, paper PL.4.1. (Int. J. Water, Air and Soil Poll., accepted).Google Scholar
  3. COST-710: 1998, ‘Harmonisation of Pre-Processing of Meteorological Data for Atmospheric Dispersion Models, Final Report’, European Commission, Report EUR 18195 EN.Google Scholar
  4. COST-715: 2001, ‘Surface Energy Balance in Urban Areas’, Extended Abstracts of an Expert Meeting. WG-2 COST Action 715, Antwerp, Belgium, 12 April 2000. European Commission. Report EUR 19447.Google Scholar
  5. Dupont, S., Guilloteau, E. and Mestayer, P. G.: 2000, ‘Energy Balance and Surface Temperatures of Urban Quarters’, Proc. 3rd AMS Symposium on Urban Environment, Davis, California, 14–18 August 2000, pp. 149–150.Google Scholar
  6. Dupont, E., Menut, L., Carissimo, B., Pelon, J. and Flamant, P.: 1999, ‘Comparison between the atmospheric boundary layer in Paris and its rural suburbs during the ECLAP experiment’, Atmos. Env. 33, 979–994.Google Scholar
  7. Ellis, N. L. and Middleton, D. R.: 2000, ‘Field Measurements and Modelling of Urban Meteorology in Birmingham, UK’, Proc. 3rd AMS Symposium on Urban Environment, Davis, CA, American Meteorological Society, Boston, MA, 108–109.Google Scholar
  8. Feigenwinter, C., Vogt, R. and Parlow, E.: 1999, ‘Vertical structure of selected turbulence characteristics above an urban canopy’, Theoret. Appl. Climatol. 62, 51–63.Google Scholar
  9. Fisher, B. E. A., Kukkonen, J., Schatzmann, M.: 2002, ‘Meteorology applied to urban air pollution problems COST 715’, Sixth Int. Conf. On Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes, October 11–14, 1999, Rouen, France, 10 p. Int. J. Environment and Pollution 16, 560–569.Google Scholar
  10. Grimmond, C. S. B. and Oke, T.R.: 1995, ‘Comparison of heat fluxes from summertime observations in the suburbs of four North American cities’, J. Appl. Meteor. 34, 873–889.Google Scholar
  11. Grimmond, C. S. B. and Oke, T. R.: 1999, ‘Heat storage in urban areas: Local-scale observations and evaluation of a simple model’, J. Appl. Meteor. 38, 922–940.Google Scholar
  12. Grimmond, C. S. B. and Oke, T. R.: 2000, ‘A Local-Scale Urban Meteorological Pre-Processing Scheme (LUMPS)’, ‘Preparation of Meteorological Input Data for Urban Site Studies' (ed.: M. Schatzmann, J. Brechler, B. Fisher), Prague, Czech Republic, June 15, 2000, 73–83.Google Scholar
  13. Grimmond, C. S. B. and Oke, T. R.: 2002, ‘Turbulent heat fluxes in urban areas: Observations and local-scale urban meteorological parameterization scheme (LUMPS)’, J. Appl. Meteor. 41, 792–810.Google Scholar
  14. Grimmond, C. S. B. and Souch, C.: 1994, ‘Surface description for urban climate studies: a GIS based methodology’, Geocarto Int. 9, 47–59.Google Scholar
  15. Grimmond, C. S. B., Cleugh, H. A. and Oke, T. R.: 1991, ‘An objective urban heat storage model and its comparison with other schemes’, Atmos. Env. 25B, 311–326.Google Scholar
  16. Grimmond, C. S. B., Souch, C. and Hubble, M.: 1996, ‘The influence of tree cover on summertime energy balance fluxes, San Gabriel Valley, Los Angeles’, Clim. Res. 6, 45–57.Google Scholar
  17. Holmer, B. and Eliasson, I.: 1999, ‘Urban-rural vapour pressure differences and their role in the development of urban heat islands’, Int. J. Climatol. 19: 989–1009.Google Scholar
  18. Holtslag, A. A. M. and Van Ulden, A. P.: 1983, ‘A simple scheme for daytime estimates of the surface fluxes from routine weather data’, J. Appl. Meteor. 22, 517–529.Google Scholar
  19. Kallos, G.: 1998, ‘Regional/Mesoscale Models’, Urban Air Pollution – European Aspects (Part. IV.,Chap. 11.), Kluwer Acad. Publ., Dordrecht, Boston, London, pp. 177–196.Google Scholar
  20. Klysik, K.: 1996, ‘Spatial and seasonal distribution of anthropogenic heat emissions in Lodz, Poland’, Atmos. Env. 30, 3397–3404.Google Scholar
  21. Lemonsu, A. and Masson, V.: 2001, ‘Simulation of a summer urban breeze over Paris’, Boundary-Layer Meteorol. 104, 463–490.Google Scholar
  22. Martilli, A.: 2001, ‘Development of an Urban Turbulence Parameterisation for Mesoscale Atmospheric Models’, Swiss Federal Institute of Technology Lausanne (EPFL), Dissertation 2445, 176 pp.Google Scholar
  23. Martilli, A., Clappier, A. and Rotach, M. W.: 2002, ‘An urban surface exchange parameterisation for mesoscale models’, Boundary-Layer Meteorol. 104, 261–304.Google Scholar
  24. Masson, V.: 2000, ‘A physically-based scheme for the urban energy budget in atmospheric models’, Boundary-Layer Meteorol. 94, 357–397.Google Scholar
  25. Mestayer, P. G.: 1998, ‘Urban Scale Models’, Urban Air Pollution – European Aspects (Part. IV.,Chap. 11.), Kluwer Acad. Public., Dordrecht, Boston, London, pp. 197–222.Google Scholar
  26. Noilhan, J. and Planton, S.: 1989, ‘A simple parameterization of the land surface processes for meteorological models’, Mon. Wea. Rev. 117, 536–549.Google Scholar
  27. Oke, T. R.: 1997, ‘Urban environments’, in W. G. Bailey, T. R. Oke and W. R. Rouse (eds), The Surface Climates of Canada, McGill-Queen's University Press, Montréal, 303–327.Google Scholar
  28. Oke, T. R., Grimmond, C. S. B. and Spronken-Smith, R.: 1998, ‘On the confounding role of rural wetness in assessing urban effects on climate’, Preprints of the AMS Second Urban Environment Symposium, 59–62.Google Scholar
  29. Oke, T. R., Spronken-Smith, R., Jauregui, E. and Grimmond, C. S. B.: 1999, ‘Recent energy balance observations in Mexico City’, Atmos. Env. 33, 3919–3930.Google Scholar
  30. Piringer, M., Baklanov, A., De Ridder, K., Ferreira, J., Joffre, S., Karppinen, A., Mestayer, P., Middleton, D., Tombrou, M., Vogt, R.: 2001, ‘The Surface Energy Budget and the Mixing Height in Urban Areas: Status Report of Working Group 2 of COST-Action 715’, Ext. abstract to the Third Urban Air Quality Conference, Loutraki, Greece. CD-ROM, paper Pl 1.3.Google Scholar
  31. Rotach, M. W.: 2001, ‘Simulation of urban-scale dispersion using a Lagrangian stochastic dispersion model’, Boundary-Layer Meteorol. 99, 379–410.Google Scholar
  32. Rotach, M. W., Mitev, V., Vogt, R., Clappier, A., Richner, H., Ruffieux, D.: 2001, ‘BUBBLE – Current Status of the Experiment and Planned Investigation/Evaluation of the Urban Mixing Height’, Proc. COST-Action 715 Workshop on the Mixing Height and Inversions in Urban Areas, Toulouse, 3–4 Oct. 2001 (submitted).Google Scholar
  33. Roth, M. and Oke, T. R.: 1995, ‘Relative efficiencies of turbulent transfer of heat, mass and momentum over a patchy urban surface’, J. Atmos. Sci. 52, 1864–1874Google Scholar
  34. Schmid, H. P.: 1994, ‘Source areas for scalars and scalar fluxes’, Boundary-Layer Meteorol. 67,293–318.Google Scholar
  35. Schmid, H. P.: 1997, ‘Experimental design for flux measurements: matching scales of observations and fluxes’, Agr. Forest Meteorol. 87, 179–200.Google Scholar
  36. Spronken-Smith, R. A.: 1998, ‘Comparison of Summer and Wintertime Energy Fluxes over a Sub-urban Neighborhood’, Preprints of the Second Urban Environment Symposium, Christchurch, New Zealand, American Meteorological Society, pp. 243–246.Google Scholar
  37. Taha, H. and Bornstein, R.: 2000, ‘Urbanization of meteorological models and implications on simulated heat islands and air quality’, in R. J. de Dear, J. D. Kalma, T. R. Oke and A. Auliciems (eds), Biometeorology and Urban Climatology at the Turn of the Millenium. Selected Papers from the Conference ICB-ICUC '99, Sydney, Australia, 8–12 Nov. 1999, pp. 431–435.Google Scholar
  38. Voogt, J. A. and Grimmond, C. S. B.: 2000, ‘Modeling surface sensible heat flux using surface radiative temperatures in a simple urban area’, J. Appl. Meteor. 39, 1679–1699.Google Scholar
  39. Zhang, X., Aono, Y., Monji, N.: 1998, ‘Spatial variability of urban surface heat fluxes estimated from LANDSAT TM data under summer and winter conditions’, J. Agric. Meteor. 54, 1–11.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • M. Piringer
    • 1
  • C. S. B. Grimmond
    • 2
  • S. M. Joffre
    • 3
  • P. Mestayer
    • 4
  • D. R. Middleton
    • 5
  • M. W. Rotach
    • 6
  • A. Baklanov
    • 7
  • K. De Ridder
    • 8
  • J. Ferreira
    • 9
  • E. Guilloteau
    • 10
  • A. Karppinen
    • 3
  • A. Martilli
    • 11
  • V. Masson
    • 12
  • M. Tombrou
    • 13
  1. 1.Central Institute for Meteorology and GeodynamicsViennaAustria
  2. 2.Dept. of GeographyIndiana UniversityBloomington
  3. 3.Finnish Meteorological InstituteHelsinkiFinland
  4. 4.LMF, CNRS – Ecole Centrale de NantesNantesFrance
  5. 5.Meteorological OfficeBracknellUnited Kingdom
  6. 6.Swiss Federal Institute of TechnologyZuerichSwitzerland
  7. 7.Danish Meteorological InstituteCopenhagenDenmark
  8. 8.VITO-TAPMolBelgium
  9. 9.Instituto de MeteorologiaLisbonPortugal
  10. 10.University ValenciennesFrance
  11. 11.Swiss Federal Institute of TechnologyLausanneSwitzerland
  12. 12.CNRM Meteo FranceToulouseFrance
  13. 13.Dept. of Applied PhysicsUniv. of AthensAthensGreece

Personalised recommendations