Advertisement

Journal of Computer-Aided Molecular Design

, Volume 16, Issue 7, pp 501–509 | Cite as

Theoretical descriptors for the quantitative rationalisation of plastocyanin mutant functional propertiess

  • F. De Rienzo
  • G.H. Grant
  • M.C. MenzianiEmail author
Article

Abstract

A quantitative rationalisation of the effect of specific amino acids on the recognition process and redox characteristics of plastocyanin towards cytochrome f, as determined by point mutation experiments, has been attempted in this study. To achieve this goal we derived theoretical descriptors directly from the three-dimensional structure of the plastocyanin mutants, in the same manner as it is usually done for small drug-like molecules. The protein descriptors computed can be related to: (a) the electrostatic and dipole-dipole interactions, effective at long distance; (b) polar interactions whose features are encoded by charged partial surface area descriptors; (c) the propensity of the surface residues to form hydrogen bonding interactions; and (d) dispersion and repulsive interactions. Moreover, an estimation of mutation-dependent variation of redox potential observed has been obtained by electrostatic free energy calculations. The quantitative structure-activity relationship (QSAR) models offer structural interpretation of the point mutation experiment responses and can be of help in the design of new protein engineering experiments.

functional properties plastocyanin point mutations quantitative structure-activity relationships redox-proteins theoretical descriptors. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Livingstone, D.J. J. Chem. Inf. Comput. Sci., 40 (2000) 195–209.Google Scholar
  2. 2.
    Karelson, M., Lobanov, V.S., Katritzky, A.R. Chem. Rev., 96 (1996) 1027–1043.Google Scholar
  3. 3.
    Sandberg, M., Eriksson, L., Jonsson, J., Sjostrom, M., Wold, S. J. Med. Chem., 41 (1998) 2481–2491.Google Scholar
  4. 4.
    Battistuzzi, G., Borsari, M., Loschi, L., Menziani, M.C., De Rienzo, F., Sola, M. Biochemistry, 40 (2001) 6422–6430.Google Scholar
  5. 5.
    De Rienzo, F., Gabdoulline, R.R., Menziani, M.C., De Benedetti P.G. and Wade, R.C. Biophys. J., 81, (2001) 3090–3104.Google Scholar
  6. 6.
    Adman, E.T. Adv. Prot. Chem., 42 (1992) 145–197, and referencs therein.Google Scholar
  7. 7.
    Sykes, A.G. Adv. Inorg. Chem., 36 (1994) 377–408.Google Scholar
  8. 8.
    Kannt, A., Young, S., Bendall, D.S. Biochim. Biophys. Acta., 1277 (1996) 115–126.Google Scholar
  9. 9.
    Schaefer, M., Sommer, M., Karplus, M. J. Phys. Chem. B, 101, (1997) 1663–1683.Google Scholar
  10. 10.
    Xue, Y., Okvist, M., Young, S. Prot. Sci, 7 (1998) 2099–2105.Google Scholar
  11. 11.
    Madura, J.D., Briggs, J.M., Wade, R.C., Davis, M., Luty, B.A., Ilin, A., Antonsiewicz, J., Bagheri, M.K., 0 Scott, B., McCammon, J.A. Comp. Phys. Comm., 91 (1995) 57–95.Google Scholar
  12. 12.
    Jorgensen, W.L., Tirado-Rives, J. J. Am. Chem. Soc., 110 (1988) 1657–1666.Google Scholar
  13. 13.
    De Rienzo, F., Gabdoulline, R.R., Menziani, M.C. Wade, R.C. Prot. Sci., 9 (2000) 1439–1454.Google Scholar
  14. 14.
    Davis, M.E., McCammon, J.A. J. Comp. Chem., 12 (1991) 909–912.Google Scholar
  15. 15.
    Blomberg, N., Gabdoulline, R.R., Nilges, M., Wade, R.C. Proteins, 37 (1999) 379–387.Google Scholar
  16. 16.
    Hodgkin, E.E., Richards, W.G. Int. J. Quant. Chem. Quant. Biol. Symp., 14 (1987) 105–110.Google Scholar
  17. 17.
    Brooks, B.R., Bruccoleri, R.E., Olafson, B.D., States, D.J., Swaminathan, S., Karplus, M. J. Comput. Chem., 4 (1983) 187–217.Google Scholar
  18. 18.
    Beroza, P., Fredkin, D.R., Okamura, M.Y., Feher, G. Proc. Natl. Acad. Sci. USA, 88 (1991) 5804–5808.Google Scholar
  19. 19.
    Antosiewicz, J., McCammon, J.A., Gilson, M.K. J. Mol. Biol., 238 (1994) 415–436.Google Scholar
  20. 20.
    Redinbo, M.R., Yeates, T.O., Merchant, S. J. Bioenerg. Biomemb., 26 (1994) 49–66.Google Scholar
  21. 21.
    Stanton, D.T., Jurs, P.C. Anal. Chem. 62 (1990) 2323–2329.Google Scholar
  22. 22.
    Kier, L.B. J. Pharm. Sci., 69 (1980) 807–811.Google Scholar
  23. 23.
    Hope, A.B. Biochim. Biophys. Acta., 1456 (2000) 5–26.Google Scholar
  24. 24.
    Chen, L., Durley, R.C.E., Mathews, F.S., Davidson, V.L. Science 264 (1994) 86–90.Google Scholar
  25. 25.
    Kraulis, P.J. J. Appl. Crystallogr., 24 (1991) 946–950.Google Scholar
  26. 26.
    Ubbink, M., Ejdeback, M., Karlsson, B.G., Bendall, D.S. Structure, 6 (1998) 323–335.Google Scholar
  27. 27.
    Ejdeback, M., Bergkvist, A., Karlsson, B.G., Ubbink, M. Biochemistry, 39 (2000) 5022–5027.Google Scholar
  28. 28.
    Bendall, D.S., Wagner, M.G., Schlarb, B.G., Soellick, T.R., Ubbink, M., Howe. C.J. In Peschek et al. (eds), The Phototrophic prokaryotes. Kluwer Academic/Plenum Publishers, New York. 1999, pp. 315–328.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  1. 1.Dipartimento di ChimicaUniversita' di Modena e Reggio EmiliaModenaItaly
  2. 2.INFM-SModenaItaly
  3. 3.Physical & Theoretical Chemistry LaboratoryOxford UniversityOxford OX1 3QZUK

Personalised recommendations