Journal of Bioenergetics and Biomembranes

, Volume 34, Issue 5, pp 351–362

Human Copper-Transporting ATPase ATP7B (The Wilson's Disease Protein): Biochemical Properties and Regulation

  • Svetlana Lutsenko
  • Roman G. Efremov
  • Ruslan Tsivkovskii
  • Joel M. Walker
Article

Abstract

Wilson's disease protein (WNDP) is a product of a gene ATP7B that is mutated in patients with Wilson's disease, a severe genetic disorder with hepatic and neurological manifestations caused by accumulation of copper in the liver and brain. In a cell, WNDP transports copper across various cell membranes using energy of ATP-hydrolysis. Copper regulates WNDP at several levels, modulating its catalytic activity, posttranslational modification, and intracellular localization. This review summarizes recent studies on enzymatic function and copper-dependent regulation of WNDP. Specifically, we describe the molecular architecture and major biochemical properties of WNDP, discuss advantages of the recently developed functional expression of WNDP in insect cells, and summarize the results of the ligand-binding studies and molecular modeling experiments for the ATP-binding domain of WNDP. In addition, we speculate on how copper binding may regulate the activity and intracellular distribution of WNDP, and what role the human copper chaperone Atox1 may play in these processes.

Copper ATP7B P-type ATPase Wilson's disease ATP-binding molecular modeling regulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Arnesano, F., Banci, L., Bertini, I., Ciofi-Baffoni, S., Molteni, E., Huffman, D. L., and O'Halloran, T. V. (2002). Genome Res. 12(2), 255–271.Google Scholar
  2. Bissig, K. D., Voegelin, T. C., and Solioz, M. (2001). FEBS Lett. 507(3), 367–370.Google Scholar
  3. Bissig, K. D., Wunderli-Ye, H., Duda, P. W., and Solioz, M. (2001). Biochem. J. 357, 217–223.Google Scholar
  4. Capieaux, E., Rapin, C., Thines, D., Dupont, Y., and Goffeau, A. (1993). J. Biol. Chem. 268(29), 21895–21900.Google Scholar
  5. Carmichael, P. L., Hewer, A., Osborne, M. R., Strain, A. J., and Phillips, D. H. (1995). Mutat. Res. 326(2), 235–243.Google Scholar
  6. DiDonato, M., Hsu, H. F., Narindrasorasak, S., Que, L., Jr., and Sarkar, B. (2000). Biochemistry 39(7), 1890–1896.Google Scholar
  7. DiDonato, M., Narindrasorasak, S., Forbes, J. R., Cox, D.W., and Sarkar, B. (1997). J. Biol. Chem. 272(52), 33279–33282.Google Scholar
  8. Efremov R. G., Kosinsky Yu. A., Lutsenko S. V. (manuscript in preparation).Google Scholar
  9. Forbes, J. R., Hsi, G., and Cox, D. W. (1999). J. Biol. Chem. 274(18), 12408–12413.Google Scholar
  10. Gatto, C., Wang, A. X., and Kaplan, J. H. (1998). J. Biol. Chem. 273(17), 10578–10585.Google Scholar
  11. Gitschier, J., Moffat, B., Reilly, D., Wood, W. I., and Fairbrother, W. J. (1998). Nat. Struct. Biol. 5(1), 47–54.Google Scholar
  12. Gu, M., Cooper, J. M., Butler, P., Walker, A. P., Mistry, P. K., Dooley, J. S., and Schapira, A. H. (2000). Lancet 356(9228), 469–474.Google Scholar
  13. Hamza, I., Faisst, A., Prohaska, J., Chen, J., Gruss, P., and Gitlin, J. D. (2001). Proc. Natl. Acad. Sci. USA 98(12), 6848–6852.Google Scholar
  14. Harrison, M. D., Jones, C. E., and Dameron, C. T. (1999). J. Biol. Inorg. Chem. 4, 145–153.Google Scholar
  15. Iida, M., Terada, K., Sambongi, Y., Wakabayashi, T., Miura, N., Koyama, K., Futai, M., and Sugiyama, T. (1998). FEBS Lett. 428(3), 281–285.Google Scholar
  16. Kuntz, I. D. (1992). Science 257(5073), 1078–1082.Google Scholar
  17. Linder, M. C., and Hazegh-Azam, M. (1996). Am. J. Clin. Nutr. 63(5), 797S–811S.Google Scholar
  18. Luthy R., Bowie J. U., Eisenberg D. (1992). Assessment of protein models with three-dimensional profiles. Nature 356, 83–85.Google Scholar
  19. Lutsenko, S., Petrukhin, K., Cooper, M. J., Gilliam, C. T., and Kaplan, J. H. (1997). J. Biol. Chem. 272(30), 18939–18944.Google Scholar
  20. Majumdar, R., Al Jumah, M., Al Rajeh, S., Fraser, M., Al Zaben, A., Awada, A., Al Traif, I., and Paterson, M. (2000). J. Neurol. Sci. 179 (Suppl. 1/2), 140–143.Google Scholar
  21. Moutin, M. J., Cuillel, M., Rapin, C., Miras, R., Anger, M., Lompre, A. M., and Dupont, Y. (1994). Biol. Chem. 269(15), 11147–11154.Google Scholar
  22. Nair, J., Carmichael, P. L., Fernando, R. C., Phillips, D. H., Strain, A. J., and Bartsch, H. (1998). Cancer Epidemiol. Biomarkers Prev. 7(5), 435–440.Google Scholar
  23. O'Halloran, T. V., and Culotta, V. C. (2000). J. Biol. Chem. 275(33), 25057–25060.Google Scholar
  24. Payne, A. S., Kelly, E. J., and Gitlin, J. D. (1998). Proc. Natl. Acad. Sci. USA 95(18), 10854–10859.Google Scholar
  25. Petris, M. J., Camakaris, J., Greenough, M., LaFontaine, S., and Mercer, J. F. (1998). Hum. Mol. Genet. 7(13), 2063–2071.Google Scholar
  26. Petrukhin, K., Lutsenko, S., Chernov, I., Ross, B. M., Kaplan, J. H., and Gilliam, T. C. (1994). Hum. Mol. Genet. 3(9), 1647–1656.Google Scholar
  27. Rae, T. D., Schmidt, P. J., Pufahl, R. A., Culotta, V. C., and O'Halloran, T. V. (1999). Science 284(5415), 805–808.Google Scholar
  28. Roelofsen, H., Wolters, H., Van Luyn, M. J., Miura, N., Kuipers, F., and Vonk, R. J. (2000). Gastroenterology 119(3), 782–793.Google Scholar
  29. Sali, A., and Overington, J. P. (1994). Protein Sci. 3(9), 1582–1596.Google Scholar
  30. Schaefer, M., Hopkins, R. G., Failla, M. L., and Gitlin, J. D. (1999). Am. J. Physiol. 276, G639–G646.Google Scholar
  31. Scheinberg, I. H., and Sternlieb, I. (1984). In Major Problems in Internal Medicine, Vol. 23 (Smith, L. H., Jr., ed.), W. B. Saunders, Philadelphia Suzuki, M., and Gitlin, J. D. (1999). Pediatr. Int. 41(4), 436-442.Google Scholar
  32. Sweadner, K. J., and Donnet, C. (2001). Biochem. J. 356(Pt 3), 685–704.Google Scholar
  33. Tanzi, R. E., Petrukhin, K., Chernov, I., Pellequer, J. L., Wasco, W., Ross, B., Romano, D. M., Parano, E., Pavone, L., Brzustowicz, L.M., Devoto M., Peppercorn, J., Bush, A. I., Sternlieb, I., Pirastu, M., Gusella, J. F., Evgrafov, O., Penchaszadeh, G. K., Honig, B., Edelman, I. S., Soares, M. B., Scheinberg, I. H., and Gilliam, T. C. (1993). Nat. Genet. 5(4), 344–350.Google Scholar
  34. Terada, K., Nakako, T., Yang, X. L., Iida, M., Aiba, N., Minamiya, Y., Nakai, M., Sakaki, T., Miura, N., and Sugiyama, T. (1998). J. Biol. Chem. 273(3), 1815–1820.Google Scholar
  35. Thomas, G. R., Forbes, J. R., Roberts, E. A., Walshe, J. M., and Cox, D. W. (1995). Nat. Genet. 9(2), 210–217. 362 Lutsenko, Efremov, Tsivkovskii, andWalker Google Scholar
  36. Toyoshima, C., Nakasako, M., Nomura, H., and Ogawa, H. (2000). Nature 405, 647–655Google Scholar
  37. Tsivkovskii, R., Eisses, J. F., Kaplan, J. H., and Lutsenko, S. (2002). J. Biol. Chem. 277(2), 976–983.Google Scholar
  38. Tsivkovskii, R., MacArthur, B. C., and Lutsenko, S. (2001). J. Biol. Chem. 276(3), 2234–2242.Google Scholar
  39. Vanderwerf, S. M. A. L. S. (2002). In Biochemical Society Transactions for Biometals 2002: 3rd International Biometals Symposium, King's College London, UK.Google Scholar
  40. Vanderwerf, S. M., Cooper, M. J., Stetsenko, I. V., and Lutsenko, S. (2001). J. Biol. Chem. 276(39), 36289–36294.Google Scholar
  41. Voskoboinik, I., Greenough, M., La Fontaine, S., Mercer, J. F. B., and Camakaris, J. (2001). Bichem. Biophys. Res. Commun. 9, 966–970.Google Scholar
  42. Walker, J. M., Tsivkovskii, R., and Lutsenko, S. (2002). J. Biol. Chem. 23, 23.Google Scholar
  43. Wernimont, A. K., Huffman, D. L., Lamb, A. L., O'Halloran, T. V., and Rosenzweig, A. C. (2000). Nat. Struct. Biol. 7(9), 766–771.Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • Svetlana Lutsenko
    • 1
  • Roman G. Efremov
    • 2
  • Ruslan Tsivkovskii
    • 1
  • Joel M. Walker
    • 1
  1. 1.Department of Biochemistry and Molecular BiologyOregon Health & Science UniversityPortland
  2. 2.Shemyakin-Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations