Journal of Structural and Functional Genomics

, Volume 2, Issue 3, pp 121–127 | Cite as

Structure-based experimental confirmation of biochemical function to a methyltransferase, MJ0882, from hyperthermophile Methanococcus jannaschii

  • Lan Huang
  • Liwei Hung
  • Mark Odell
  • Hisao Yokota
  • Rosalind Kim
  • Sung-Hou Kim
Article

Abstract

We have determined the three-dimensional (3-D) structure of protein MJ0882, which derives from a hypothetical open reading frame in the genome of the hyperthermophile Methanococcus jannaschii. The 3-D fold of MJ0882 at 1.8 Å highly resembles that of a methyltransferase, despite limited sequence similarity to any confirmed methyltransferase. The structure has an S-adenosylmethionine (AdoMet) binding pocket surrounded by motifs with similarities to those commonly found among AdoMet binding proteins. Preliminary biochemical experiments show that MJ0882 specifically binds to AdoMet, which is the essential co-factor for methyltransferases.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schluckebier, G., O'Gara, M., Saenger, W. and Cheng, X. (1995) J. Mol. Biol. 247, 16–20.Google Scholar
  2. 2.
    Cheng, X., Kumar, S., Posfai, J., Pflugrath, J.W. and Roberts, R.J. (1993) Cell 74, 299–307.Google Scholar
  3. 3.
    Klimasauskas, S., Kumar, S., Roberts, R.J. and Cheng, X. (1994) Cell 76, 357–369.Google Scholar
  4. 4.
    Labahn, J. et al. (1994) Proc. Natl. Acad. Sci. USA 91, 10957–10961.Google Scholar
  5. 5.
    Reinisch, K.M., Chen, L., Verdine, G.L. and Lipscomb, W.N. (1995) Cell 82, 143–153.Google Scholar
  6. 6.
    Gong, W., O'Gara, M., Blumenthal, R.M. and Cheng, X. (1997) Nucleic Acids Res 25, 2702-2715.Google Scholar
  7. 7.
    Vidgren, J., Svensson, L.A. and Liljas, A. (1994) Nature 368, 354–358.Google Scholar
  8. 8.
    Fu, Z. et al. (1996) Biochemistry 35, 11985–11993.Google Scholar
  9. 9.
    Hodel, A.E., Gershon, P.D., Shi, X. and Quiocho, F.A. (1996) Cell 85, 247–256.Google Scholar
  10. 10.
    Bussiere, D.E. et al. (1998) Biochemistry 37, 7103–7112.Google Scholar
  11. 11.
    Djordjevic, S. and Stock, A.M. (1997) Structure 5, 545–558.Google Scholar
  12. 12.
    Aravind, L. and Koonin, E.V. (2001) Trends Biochem. Sci. 26, 215–217.Google Scholar
  13. 13.
    Holm, L. and Sander, C. (1993) J. Mol. Biol. 233, 123–138.Google Scholar
  14. 14.
    Hendrickson, W.A. (1991) Science 254, 51-58.Google Scholar
  15. 15.
    Cheng, X. (1995) Annu. Rev. Biophys. Biomol. Struct. 24, 293–318.Google Scholar
  16. 16.
    Kim, R. et al. (1998) Biotech. Lett 20, 207-210.Google Scholar
  17. 17.
    Jancarik, J., Scott, W.G., Milligan, D.L., Koshland, D.E., Jr. and Kim, S.H. (1991) J. Mol. Biol. 221, 31-34.Google Scholar
  18. 18.
    Otwinowski, Z. and Minor, W. (1997) Methods Enzymol. 276, 307–326.Google Scholar
  19. 19.
    Terwilliger, T.C. (1997) Methods Enzymol. 276, 530.Google Scholar
  20. 20.
    Cowtan, K. and Main, P. (1998) Acta Crystallogr. D Biol. Crystallogr. 54, 487–493.Google Scholar
  21. 21.
    Jones, T.A., Zou, J.-Y., Cowan, S.W. and Kjeldgaard, M. (1991) Acta Crystallogr. A47, 110–119.Google Scholar
  22. 22.
    Brunger, A.T. et al. (1998) Acta Crystallogr. D54, 905–921.Google Scholar
  23. 23.
    Kraulis, P.J. (1991) J. Appl. Crystallogr. 24, 946–950.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Lan Huang
    • 1
  • Liwei Hung
    • 2
  • Mark Odell
    • 1
  • Hisao Yokota
    • 3
  • Rosalind Kim
    • 3
  • Sung-Hou Kim
    • 3
    • 4
  1. 1.Dept. of Cellular Biochemistry and BiophysicsSloan Kettering InstituteNew York
  2. 2.Brookhaven National LaboratoryUpton
  3. 3.Physical Biosciences DivisionLawrence Berkeley National LaboratoryUSA
  4. 4.Department of ChemistryUniversity of CaliforniaBerkeleyUSA

Personalised recommendations