Journal of Biological Physics

, Volume 28, Issue 4, pp 605–617 | Cite as

Controlling and Measuring Local Composition and Properties in Lipid Bilayer Membranes

  • T.G. D'Onofrio
  • C.W. Binns
  • E.H. Muth
  • C.D. Keating
  • P.S. Weiss


Local composition, structure, morphology, and phase are interrelated in lipid bilayer membranes. This gives us the opportunity to control one or more of these properties by manipulating others. We investigate theserelationships with combinations of simultaneous two-color widefield fluorescence imaging, three-dimensional rendering of vesicle domains, andmanipulation of the vesicle morphology via optical trapping and micropipetteaspiration. We describe methods to modulate, to measure, and to probe thelocal structure of model membranes through control of membrane curvature inliposomes.

fluorescence imaging phase domains vesicle curvature 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Welti, R. and Glaser, M.: Lipid Domains in Model and Biological Membranes, Chem. Phys. Lipids 73 (1994), 121–137.Google Scholar
  2. 2.
    Brown, D.A. and London, E.: Structure and Origin of Ordered Lipid Domains in Biological Molecules, J. Membr. Biol. 164 (1998), 103–114.Google Scholar
  3. 3.
    Damjanovich, S., Matyus, L., Balazs, M., Gaspar, R., Krasznai, Z., Pieri, C., Szollosi, J. and Tron, L.: Dynamic Physical Interactions of Plasma Membrane Molecules Generate Cell Surface Patterns and Regulate Cell Activation Processes, Immunobiology 185 (1992), 337–349.Google Scholar
  4. 4.
    Needham, D.: Cohesion and Permeability of Lipid Bilayer Vesicles, In: E.A. Disalvo and S.A. Simon (eds.), Permeability and Stability of Lipid Bilayers, CRC Press, Boca Raton, 1995.Google Scholar
  5. 5.
    Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K. and Watson, J.D.: Molecular Biology of the Cell, Garland Publishing, Inc., New York, 1983.Google Scholar
  6. 6.
    Yeagle, P. (ed.): The Structure of Biological Membranes, CRC Press, Boca Raton, 1992.Google Scholar
  7. 7.
    Lipowsky, R.: The Conformation of Membranes, Nature 349 (1991), 475–481.Google Scholar
  8. 8.
    Kawakatsu, T., Andelman, D., Kawasaki, K. and Taniguchi, T.: Phase-Transitions and Shapes of 2-Component Membranes and Vesicles: 1. Strong Segregation Limit, J. Phys. II 3 (1993), 971–997.Google Scholar
  9. 9.
    Seifert, U., Berndl, K. and Lipowsky, R.: Shape Transformations of Vesicles - Phase-Diagram For Spontaneous-Curvature and Bilayer-CouplingModels, Phys. Rev. A 44 (1991), 1182–1202.Google Scholar
  10. 10.
    Seifert, U.: Curvature-Induced Lateral Phase Segregation in 2-Component Vesicles, Phys. Rev. Lett. 70 (1993), 1335–1338.Google Scholar
  11. 11.
    Seifert, U.: Configurations of Fluid Membranes and Vesicles, Adv. Phys. 46 (1997), 13–137.Google Scholar
  12. 12.
    Taniguchi, T., Kawasaki, K., Andelman, D. and Kawakatsu, T.: Phase-Transitions and Shapes of 2-Component Membranes and Vesicles: 2. Weak Segregation Limit, J. Phys. II 4 (1994), 1333–1362.Google Scholar
  13. 13.
    Taniguchi, T.: Shape Deformation and Phase Separation Dynamics of Two-Component Vesicles, Phys. Rev. Lett. 76 (1996), 4444–4447.Google Scholar
  14. 14.
    Leibier, S.: Curvature Instability in Membranes, J. Physique 47 (1986), 507–516.Google Scholar
  15. 15.
    Julicher, F. and Lipowsky, R.: Shape Transformations of Vesicles with Intramembrane Domains, Phys. Rev. E 53 (1996), 2670–2683.Google Scholar
  16. 16.
    Drouffe, J.M., Maggs, A.C. and Leibier, S.: Computer-Simulations of Self-Assembled Membranes, Science 254 (1991), 1353–1356.Google Scholar
  17. 17.
    David, F. and Leibier, S.: Vanishing Tension of Fluctuating Membranes, J. Phys. II 1 (1991), 959–976.Google Scholar
  18. 18.
    Kumar, P.B.S., Gompper, G. and Lipowsky, R.: Modulated Phases in Multicomponent Fluid Membranes, Phys. Rev. E 60 (1999), 4610–4618.Google Scholar
  19. 19.
    Devaux, P.F.: Static and Dynamic Lipid Asymmetry in Cell-Membranes, Biochemistry 30 (1991), 1163–1173.Google Scholar
  20. 20.
    Berndl, K., Kas, J., Lipowsky, R., Sackmann, E. and Seifert, U.: Shape Transformations of Giant Vesicles - Extreme Sensitivity to Bilayer Asymmetry, Europhys. Lett. 13 (1990), 659–664.Google Scholar
  21. 21.
    Dobereiner, H.G., Kas, J., Noppl, D., Sprenger, I. and Sackmann, E.: Budding and Fission of Vesicles, Biophys. J. 65 (1993), 1396–1403.Google Scholar
  22. 22.
    Farge, E. and Devaux, P.F.: Shape Changes of Giant Liposomes Induced by an Asymmetric Transmembrane Distribution of Phospholipids, Biophys. J. 61 (1992), 347–357.Google Scholar
  23. 23.
    Lehtonen, J.Y.A., Holopainen, J.M. and Kinnunen, P.K.J.: Evidence for the Formation of Microdomains in Liquid Crystalline Large Unilamellar Vesicles Caused by Hydrophobic Mismatch of the Constituent Phospholipids, Biophys. J. 70 (1996), 1753–1760.Google Scholar
  24. 24.
    Sackmann, E., Duwe, H.P. and Engelhardt, H.: Membrane Bending Elasticity and Its Role For Shape Fluctuations and Shape Transformations of Cells and Vesicles, Faraday Discuss. (1986), 281–290.Google Scholar
  25. 25.
    Korlach, J., Schwille, P., Webb, W.W. and Feigenson, G.W.: Characterization of Lipid Bilayer Phases by Confocal Microscopy and Fluorescence Correlation Spectroscopy, Proc. Natl. Acad. Sci. U.S.A. 96 (1999), 8461–8466.Google Scholar
  26. 26.
    Bagatolli, L.A., Parasassi, T. and Gratton, E.: Giant Phospholipid Vesicles: Comparison Among the Whole Lipid Sample Characteristics Using Different Preparation Methods A. Two Photon Fluorescence Microscopy Study, Chem. Phys. Lipids 105 (2000), 135–147.Google Scholar
  27. 27.
    Parasassi, T. and Gratton, E.: Membrane Lipid Domains and Dynamics as Detected by Laurdan Fluorescence, J. Fluoresc. 5 (1995), 59–69.Google Scholar
  28. 28.
    Parasassi, T., De Stasio, G., d'Ubaldo, A. and Gratton, E.: Phase Fluctuation in Phospholipid Membranes Revealed by Laurdan Fluorescence, Biophys. J. 57 (1990), 1179–1186.Google Scholar
  29. 29.
    Buboltz, J.T. and Feigenson, G.W.: Detection of Coexisting Bilayer Gel and Fluid Phases by Equilibrium Surface Pressure Analysis, Langmuir 16 (2000), 3606–3611.Google Scholar
  30. 30.
    Needham, D. and Zhelev, D.: The Mechanochemistry of Lipid Vesicles Examined by Micropipet Manipulation Techniques, In: M. Rosoff (ed.), Vesicles, 62, Marcel Dekker, New York, 1996, pp. 373–443.Google Scholar
  31. 31.
    Needham, D.: Micropipet Manipulation of Lipid Membranes: Direct Measurement of the Material Properties of a Cohesive Structure that is only Two Molecules Thick, J. Mater. Educ. 14 (1992), 217–238.Google Scholar
  32. 32.
    Needham, D. and Zhelev, D.V.: Lysolipid Exchange with VesicleMembranes and the Formation and Evolution of Porous Defects, Ann. Biomed. Eng. 23 (1995), 287–299.Google Scholar
  33. 33.
    Evans, E. and Metcalfe, M.: Free Energy Potential for Aggregation of Giant, Neutral Lipid Bilayer Vesicles by Van der Waals Attraction, Biophys. J. 46 (1984), 423–426.Google Scholar
  34. 34.
    Needham, D. and Evans, E.: Structure and Mechanical Properties of Giant Lipid (DMPC) Vesicle Bilayers From 20 °C Below to 10 °C Above the Liquid Crystal-Crystalline Phase Transition at 24 °C, Biochemistry 27 (1988), 8261–8269.Google Scholar
  35. 35.
    Karlsson, R., Karlsson, M., Karlsson, A., Cans, A.-S., Bergenholtz, J., Akerman, B., Ewing, A.G., Voinovaa, M. and Orwar, O.: Fluid and Material Transport in Nanoscale Lipid Channels, in preparation.Google Scholar
  36. 36.
    Dietrich, C., Angelova, M. and Pouligny, B.: Adhesion of Latex Spheres to Giant Phospholipid Vesicles: Statics and Dynamics, J. Phys. II 7 (1997), 1651–1682.Google Scholar
  37. 37.
    Keating, C.D., D'Onofrio, T.G., Hatzor, A., Whelpley, A., Natan, M.J. and Weiss, P.S.: In: D.J. Bornhop and K. Licha (eds.), Proceedings of the SPIE 3924 (2000), pp. 18–26.Google Scholar
  38. 38.
    Henon, S., Lenormand, G., Richert, A. and Gallet, F.: A New Determination of the Shear Modulus of the Human Erythrocyte Membrane using Optical Tweezers, Biophys. J. 76 (1999), 1145–1151.Google Scholar
  39. 39.
    Sleep, J., Wilson, D., Simmons, R. and Gratzer, W.: Elasticity of the Red Cell Membrane and its Relation to Hemolytic Disorders: An Optical Tweezers Study, Biophys. J. 77 (1999), 3085–3095.Google Scholar
  40. 40.
    Dai, J. and Sheetz, M.P.: Cell Membrane Mechanics, In: M.P. Sheetz (ed.), Methods in Cell Biology, 55, Academic Press, San Diego, 1998.Google Scholar
  41. 41.
    Haugland, R.P.: Handbook of Fluorescent Probes and Research Chemicals, Sixth ed., Molecular Probes Inc., United States of America, 1996.Google Scholar
  42. 42.
    Akashi, K.-I., Miyata, H., Itoh, H. and Kinosita, J.K.: Formation of Giant Liposomes Promoted by Divalent Cations: Critical Role of Electrostatic Repulsion, Biophys. J. 74 (1998), 2973–2982.Google Scholar
  43. 43.
    Ethier, M.F., Wolf, D.E. and Melchior, D.: A Calorimetric Investigation of the Phase Partitioning of Fluorescent Carbocyanine Probes in Phosphatidylcholine Bilayers, Biochemistry 22 (1983), 1178–1182.Google Scholar
  44. 44.
    Block, S.: Personal communication.Google Scholar
  45. 45.
    Visscher, K., Gross, S.P. and Block, S.: Construction of Multiple-Beam Optical Traps with Nanometer-Resolution Position Sensing, IEEE J. Selected Topics in Quantum Electronics 2 (1996), 1066–1076.Google Scholar
  46. 46.
    Kellermayer, M.S.Z., Smith, S.B., Bustamante, C. and Granzier, H.L.: Complete Unfolding of the Titin Molecule under External Force, J. Struct. Biol. 122 (1998), 197–205.Google Scholar
  47. 47.
    Russ, J.C.: The Image Processing Handbook, 2nd ed., CRC, Boca Raton, 1995.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • T.G. D'Onofrio
    • 1
  • C.W. Binns
    • 1
  • E.H. Muth
    • 1
  • C.D. Keating
    • 1
  • P.S. Weiss
    • 1
  1. 1.Department of ChemistryThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations