Journal of Gambling Studies

, Volume 19, Issue 1, pp 53–84 | Cite as

Neurodevelopment, Impulsivity, and Adolescent Gambling

  • R. Andrew Chambers
  • Marc N. Potenza
Article

Abstract

The prevalence of problem and pathological gambling in adolescence and young adulthood has been found to be two- to fourfold higher than in adulthood. Given that these high rates might predict future increases across all age groups, it is important to explore the causes of the elevated rates of problem and pathological gambling among youths. This article reviews evidence for a neurobiological basis for adolescent vulnerability to problem and pathological gambling behaviors. We propose that a common trait motif of impulsivity might underlie phenomenology of pathological gambling, commonly comorbid psychiatric disorders, and related aspects of adolescent behavior. Recent advances in understanding the brain mechanisms involved in motivation, reward, and decision-making allow a discussion of neural circuitry underlying impulsivity. Emerging data indicate that important neurodevelopmental events during adolescence occur in brain regions associated with motivation and impulsive behavior. We hypothesize that immaturity of frontal cortical and subcortical monoaminergic systems during normal neurodevelopment underlies adolescent impulsivity as a transitional trait-behavior. While these neurodevelopmental processes may confer advantage by promoting a learning drive for optimal adaptation to adult roles, they may also confer an increased vulnerability to addictive behaviors such as problem and pathological gambling. An exploration of the developmental changes in neural circuitry involved in impulse control has significant implications for understanding adolescent behaviors and treating problem and pathological gambling among youths.

neural networks neurodevelopment serotonin dopamine prefrontal cortex 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander G. E. (1982). Functional development of frontal association cortex in monkeys: behavioral and electrophysiological studies. Neuroscience Research Progress Bulletin, 20, 471–479.Google Scholar
  2. Ames D., Cummings J. L., Wirshing W. C., Quinn B., Mahler M. (1994). Repetitive and compulsive behavior in frontal lobe degenerations. Journal of Neuropsychiatry & Clinical Neurosciences, 6, 100–13.Google Scholar
  3. Anderson S. A., Classey J. D., Conde F., Lund J. S., Lewis D. A. (1995). Synchronous development of pyramidal neuron dendritic spines and parvalbumin-immunoreactive chandelier neuron axon terminals in layer III of monkey prefrontal cortex. Neuroscience, 67, 7–22.Google Scholar
  4. Anderson S. W., Bechara A., Damasio H., Tranel D., Damasio A. R. (1999). Impairment of social and moral behavior related to early damage in human prefrontal cortex. Nature Neuroscience, 2, 1032–1037.Google Scholar
  5. Badiani A., Oates M. M., Robinson T. E. (2000). Modulation of morphine sensitization in the rat by contextual stimuli. Psychopharmacologia, 151, 273–82.Google Scholar
  6. Bauer L. O. (2001). Antisocial personality disorder and cocaine dependence: their effects on behavioral and electroencephalographic measures of time estimation. Drug and Alcohol Dependence, 63, 87–95.Google Scholar
  7. Bechara A. (2001). Neurobiology of decision-making: risk and reward. Seminars in Clinical Neuropsychiatry, 6, 205–216.Google Scholar
  8. Bechara A., Damasio A., Damasio H., Anderson S. W. (1994). Insensitivity to future consequences following damage to human prefrontal cortex, Cognition, 50, 7–15.Google Scholar
  9. Bechara A., Damasio H., Damasio H. R., et al. (1999). Different contributions of the human amygdala and ventromedial prefrontal cortex to decision-making. Journal of Neuroscience, 19, 5473–5481.Google Scholar
  10. Bechara A., Damasio H., Damasion A. R. (2000). Emotion, decision making and the orbitofrontal cortex. Cerebral Cortex, 10, 295–307.Google Scholar
  11. Beyenburg S., Watzka M., Clusmann H., et al. (2000). Androgen receptor mRNA expression in the human hippocampus. Neuroscience Letters, 294, 25–8.Google Scholar
  12. Bickel W. K., Odum A. L., Madden G. J. (1999). Impulsivity and cigarette smoking: delay discounting in current, never and ex-smokers. Psychopharmacologia, 146, 447–454.Google Scholar
  13. Blanco C., Moreyra P., Nunes E. V., Saiz-Ruiz J., Ibanez A. (2001). Pathological gambling: Addiction or compulsion. Seminars in Clinical Neuropsychiatry, 6, 167–176.Google Scholar
  14. Brady K. T., Myrick H., McElroy S. (1998). The relationship between substance use disorders, impulse control disorders, and pathological agression. American Journal on Addictions, 7, 221–30.Google Scholar
  15. Breiter H. C., Aharon I., Kahneman D., Dale A., Shizgal P. (2001). Functional imaging of neuroal responses to expectancy and experiences of monetary gains and losses. Neuron, 30, 619–639.Google Scholar
  16. Breiter H. C., Gollub R. L., Weisskopf R. M., et al. (1997). Acute effects of cocaine on human brain activity and emotion. Neuron, 19, 591–611.Google Scholar
  17. Brown G. L., Linnoila M. I. (1990). CSF serotonin metabolite (5-HIAA) studies in depression, impulsivity, and violence. Journal of Clinical Psychiatry, 51, 31–41.Google Scholar
  18. Buchanan C. M., Eccles J. S., Becker J. B. (1992). Are adolescents the victims of raging hormones: evidence for activational effects of hormones on moods and behavior in adolescence. Psychological Bulletin, 111, 62–107.Google Scholar
  19. Cardinal R. N., Pennicott D. R., Sugathapala C. L., Robbins T. W., Everitt B. (2001). Impulsive choice induces in rats by lesions of the nucleus accumbens core. Science, 292, 2499–2501.Google Scholar
  20. Carr D. B., Sesack S. (1996). Hippocampal afferents to the rat prefrontal cortex: synaptic targets and relation to dopamine terminals. The Journal of Comparative Neurology, 369, 1–15.Google Scholar
  21. Cavedini P., D'Annucci A., Ubbaldi A., et al. (2001). Pathological gambling and obsessive-compulsive spectrum disorder: Neuropsychological evidences, World Congress of Biological Psychiatry. Berlin, Germany.Google Scholar
  22. Chambers R. A., Krystal J. K., Self D. W. (2001). A neurobiological basis for substance abuse comorbidity in schizophrenia. Biological Psychiatry, 50, 71–83.Google Scholar
  23. Chambers R. A., Potenza M. N. (2001). Schizophrenia and Pathological Gambling (Letter). American Journal of Psychiatry, 158, 497–498.Google Scholar
  24. Chambers R. A., Potenza M. N. (in press). Impulse control disorders. In Aminoff M. J., Daroff R. B. (eds), Encyclopedia of the Neurological Sciences. San Diego, CA: Academic Press.Google Scholar
  25. Chugani H. R., Phelps M. E., Mazziotta J. C. (1987). Positron emission tomography study of human brain functional development. Annals of Neurology, 322, 487–497.Google Scholar
  26. Clayton R. (1992). Transitions in drug use: risk and protective factors. In Glantz M., Pickens R. (eds), Vulnerability to drug abuse. Washington, D.C.: American Psychological Association, pp. 15–52.Google Scholar
  27. Cote L., Crutcher M. D. (1991). The Basal Ganglia. In Kandel E. R., Schwartz J. H., Jessell T. M. (eds), Principles of Neural Science, 3 ed. Norwalk, CT: Appleton & Lange, pp. 647–659.Google Scholar
  28. Courchesne E. (1977). Event related brain potentials: comparison between children and adults. Science, 197, 589–92.Google Scholar
  29. Crean J. P., de Wit H., Richards J. B. (2000). Reward discounting as a measure of impulsive behavior in a psychiatric outpatient population. Experimental and Clinical Psychopharmacology, 8, 155–162.Google Scholar
  30. Cunningham-Williams R. M., Cottler L. B. (2001). The epidemiology of pathological gambling. Seminars in Clinical Neuropsychiatry, 6, 155–166.Google Scholar
  31. Cunningham-Williams R. M., Cottler L. B., Compton W. M., Spitznagel E. L. (1998). Taking chances: problem gamblers and mental health disorders-results from the St. Louis Epidemiologic Catchment Area Study. American Journal of Public Health, 88, 1093–1096.Google Scholar
  32. Damasio H., Grabowski T., Frank R., Galaburda A. M., Damasio A. R. (1994). The return of Phineas Gage: clues about the brain from the skull of a famous patient. Science 264, 1102–1105.Google Scholar
  33. Davidson R. J., Putnam K. M., Larson C. L. (2000). Dysfunction in the neural circuitry of emotion regulation—a possible prelude to violence. Science, 289, 591–5.Google Scholar
  34. Derevensky J. L., Gupta R. (2000). Prevalence estimtes of adolescent gambling: a comparison of the SOGS-RA, DSM-IV-J, and the GA 20 Questions. Journal of Gambling Studies, 16, 227–252.Google Scholar
  35. DiClemente C., Story M., Murray K. (2000). On a roll: the process of initiation and cessation of problem gambling among adolescents. Journal of Gambling Studies, 16, 289–313.Google Scholar
  36. DSM-IV-TR (2000): Diagnostic and Statistical Manual of Mental Disorders (4th Ed.-Text Revision). Washington, D.C.: American Psychiatric Association.Google Scholar
  37. Eisen S. A., Slutske W. S., Lyons M. J., et al. (2001). The genetics of pathological gambling. Seminars in Clinical Neuropsychiatry 6, 195–204.Google Scholar
  38. Evenden J. L. (1999). Varieties of impulsivity. Psychopharmacology, 146, 348–61.Google Scholar
  39. Feinberg I. (1983). Scizophrenia: Caused by a fault in programmed synaptic elimination during adolescence. Journal of Psychiatric Research, 17, 319–334.Google Scholar
  40. Feinberg I., Hibi S., Carlson V. R. (1977). Changes in the EEG amplitude during sleep with age. In Nandy K., Sherwin I. (eds), Aging Brain and Senile Dementia. New York: Plenum Press, pp. 85–98.Google Scholar
  41. Ferster C. B., Skinner B. F. (1957). Schedules of reinforcement. New York: Appleton-Century-Crofts.Google Scholar
  42. Filipek P. A., Richelme C., Kennedy D. N., Caviness V. S. Jr. (1994). The young adult human brain: An MRI-based morphometric analysis. Cerebral Cortex, 4, 344–360.Google Scholar
  43. Finch D. M. (1996). Neurophysiology of converging synaptic inputs from th rat prefrontal cortex, amygdala, midline thalamus, and hippocampal formation onto single neurons of the caudat/putamen and nucleus accumbens. Hippocampus 6, 495–512.Google Scholar
  44. Finlay J.M., Zigmond M.J. (1997). The effects of stress on central dopaminergic neurons: possible clinical implications. Neurochemical Research, 22, 1387–1394.Google Scholar
  45. Flavell J. H. (1963). The developmental psychology of Jean Piaget. New York: Van Norstrand.Google Scholar
  46. Fuller R. W. (1996). Fluoxetine effects on serotonin function and aggressive behavior. Annals of the New York Academy of Sciences, 794, 90–7.Google Scholar
  47. Gerstein D., Hoffmann J., Larison C., et al. (1999). Gambling impact and behavior study: National Opinion Resarch Center, University of Chicago.Google Scholar
  48. Giedd J. N., Snell J. W., Lange N., et al. (1996). Quantative magnetic resonance imaging of human brain development: ages 4–18. Cerebral Cortex, 6, 551–560.Google Scholar
  49. Goldman-Rakic P. S. (1987). Circuitry of the primate prefrontal cortex and regulation of behavior by representational memory. In Plum F. (ed), Handbook of Physiology, section 1, Vol 5. Bethesda, MD: American Psysiological Society, pp. 373–417.Google Scholar
  50. Goodin D. S., Squires K. C., Henderson B. H., Starr A. (1978). Age-related variations in evoked potentials to auditory stimuli in normal human subjects. Electroencephalography and Clinical Neurophysiology, 44, 447–458.Google Scholar
  51. Gorski R. (1999). Development of the cerebral cortex: XV. Sexual differentiation of the centra nervous system. American Academy of Child and Adolescent Psychiatry, 38, 344–346.Google Scholar
  52. Granger R., Wiebe S., Taketani M., Lynch G. (1996). Distinct memory circuits composing the hippocampal region. Hippocampus, 6, 567–578.Google Scholar
  53. Grant S. J., Contoreggi C. C., London E. D. (2000). Drug abusers show impaired performance in a laboratory test of decision making. Neuropsychologia, 38, 1180–1187.Google Scholar
  54. Groenewegen H. J., Wright C. I., Uylings H.B.M. (1997). The anatomical relationships of the prefrontal cortex with limbic structures and the basal ganglia. Journal of Psychopharmacology, 11, 99–106.Google Scholar
  55. Gupta R., Derevensky J. L. (2000). Adolescents with gambling problems: from research to treatment. Jounral of Gambling Studies, 16, 315–342.Google Scholar
  56. Gurden H., Tassin J. P., Jay T. M. (1999). Integrety of mesocortical dopaminergic system is necessary for complete expression of in vivo hippocmapal-prefrontal cortex long-term potentiation. Neuroscience, 94, 1019–1027.Google Scholar
  57. Heckers S., Rauch S. L., Goff D., et al. (1998). Impaired recruitment of the hippocampus during conscious recollection in schizophrenia. Nature Neuroscience, 1, 318–323.Google Scholar
  58. Holden C. (2001). Behavioral addictions: Do they exist? Science, 294, 980–982.Google Scholar
  59. Huttenlocher P. R. (1979). Synaptic density in human frontal cortex-developmental changes and effects of aging. Brain Research, 163, 195–205.Google Scholar
  60. Intrator N. (1998). Competitive Learning. In Arbib MA (ed.), The Hand Book of Brain Theory and Neural Networks. Cambridge, MA: The MIT Press, pp. 220–223.Google Scholar
  61. Jacobs D. E. (2000). Juvenile gambling in North America: an analysis of long term trends and future prospects. Journal of Gambling Studies, 16, 119–152.Google Scholar
  62. James K. C. (1999). National gambling impact study commission: final report to congress.Google Scholar
  63. Jentsch J. D., Taylor J. R. (1999). Impulsivity resulting from frontostriatal dysfunction in drug abuse: implications for the control of behavior by reward-related stimuli. Psychopharmacology, 146, 373–390.Google Scholar
  64. Johnson B. D., Muffler J. (1997). Sociocultural. In Lowinson J. H., Ruiz P., Millman R. B., Langrod J. G. (Eds.), Substance Abuse a Comprehensive Textbook. Baltimore: Williams & Wilkins, pp. 107–1117.Google Scholar
  65. Kalivas P. W. (1993). Neurotransmiter regulation of dopamine neurons in the ventral tegmental area. Briain Research Reviews, 18, 75–113.Google Scholar
  66. Karreman M., Westerink B.H.C., Moghaddam B. (1996). Excitatory amino acid receptors in the ventral tegmental area regulate dopamine release in the ventral striatum. Journal of Neurochemistry, 67, 601–607.Google Scholar
  67. Kety S. S. (1956). Human cerebral blood flow and oxygen consumption as related to aging. Association of Research in Nervous and Mental Disease, 35, 31–45.Google Scholar
  68. Kirtzer M. F. (1997). Selective colocalization of immunoreactivity for intracellular gonadal hormone receptors and tyrosine hydroxylase in the ventral tegmental area, substantia nigra, and retrorubral fields in the rat. Journal of Comparative Neurology, 379, 247–60.Google Scholar
  69. Koepp M. J., Gunn R. N., Lawrence A. D., et al. (1998). Evidence for striatal dopamine release during a video game. Nature, 393, 266–268.Google Scholar
  70. Kolomiets B. P., Deniau J. M., Mailly P., Menetrey A., Thierry A. M. (2001). Segregation and convergence of infomation flow through the cortico-subthalamic pathways. Journal of Neuroscience, 21, 5764–5772.Google Scholar
  71. Lambe E., Krimer L. S., Goldman-Rakic P. S. (2000). Differential postnatal development of catecholamine and serotonin inputs to identified neurons in prefrontal cortex of rhesus monkey. Journal of Neuroscience, 20, 8780–8787.Google Scholar
  72. Lavin A., Grace A. A. (1994). Modulation of dorsal thalamic cell activity by the venral pallidum: its role in the regulation of thalamocortical activity by the basal ganglia. Synapse, 18, 104–127.Google Scholar
  73. Leary K., Dickerson M. (1985). Levels of arousal in high-and low frequency gamblers. Behavior Research & Therapy, 23, 635–640.Google Scholar
  74. Leckman J. F., Cohen D. J. (1996). Tic Disorders. In Lewis M. (ed.), Child and adolescent psychiatry. Baltimore: Williams & Wilkins, pp. 622–629.Google Scholar
  75. Legault M., Wise R. (2001). Novelty-evoked elevations of nucleus accumbens dopamine: dependence on impulse flow from the ventral subiculum and glutamatergic neurotransmission in the ventral tegmental area. European Jounral of Neurosciece, 13, 819–28.Google Scholar
  76. Lesieur H. (2000). Types, lotteries, and substance abuse among problem gamblers: commentary on “Illegal behaviors in problem gambling: analysis of data from a gambling helpline.” Journal of the Amercian Academy of Psychiatry and Law, 28, 404–407.Google Scholar
  77. Lewis D. A. (1997). Development of the prefrontal cortex during adolescence: insights into vulnerable neural circuits in schizophrenia. Neuropsychopharmacology, 16, 385–398.Google Scholar
  78. Lipska B. K., Jaskiw G. E., Chrapusta S., Karoum F., Weinberger D. R. (1992). Ibotenic acid lesion of the ventral hippocampus differentially affects dopamine and its metabolites in the nucleus accumbens and prefrontal cortex in the rat. Brain Research, 585, 1–6.Google Scholar
  79. Lipska B. K., Weinberger D. R. (1994). Gonadectomy does not prevent novelty or drug-induced motor hyperresponsivness in rats with neonatal hippocmapal damage. Brain Research. Developmental Brain Research, 78, 253–8.Google Scholar
  80. Ljungberg T., Apicella P., Schultz W. (1992). Responses of monkey dopamine neurons during learning of behavioral reactions. Journal of Neurophysiology, 67, 145–163.Google Scholar
  81. London E. D., Ernst M., Grant S., Bonson K., Weinstein A. (2000). Orbitofrontal cortex and human drug abuse: functional imaging. Cerebral Cortex, 10, 334–342.Google Scholar
  82. Lorincz A., Buzsaki G. (2000). Two-phase computational model training long-term memories in the entorhinal-hippocampal region. Annals of the New York Academy of Sciences, 911, 83–111.Google Scholar
  83. Madden G. J., Petry N. M., Badger G. J., Bickel W. K. (1997). Impulsive and self-control choices in opioid-dependent patients and non-drug-using control participants: drug and monetary rewards. Experimental and Clinical Psychopharmacology, 5, 256–262.Google Scholar
  84. Makris N., Meyer J. W., Bates J. F., Yeterian E. H., Kennedy D. N., Caviness V. S. (1999). MRI-based topographic parcellation of human white matter and nuclei II. Rationale and applications with systematics of cerebral connectivity. Neuroimage, 9, 18–45.Google Scholar
  85. Masterman D. L., Cummings J. L. (1997). Frontal-subcortical circuits: the anatomical basis of executive, social and motivational behaviors. Journal of Psychopharmacology, 11, 107–114.Google Scholar
  86. McAllister T. W. (1992). Neuropsyschiatric sequelae of head injuries. Psychiatric Clinics of North America, 15, 395–413.Google Scholar
  87. McClelland J. L., McNaughton B. L., O'Reilly R. C. (1995). Why are therecomplementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. Psychological Review, 102, 419–457.Google Scholar
  88. Minshew N. J., Goldstein G., Munez L. R., Payton J. B. (1992). Neuropsychological functioning in nonmentally retarded austistic individuals. Journal of Clinical & Experimental Neuropsychology, 14, 749–61.Google Scholar
  89. Moore S. M., Rosenthal D. A. (1992). Venturesomeness, impulsiveness, and risky behavior among older adolescents. Perceptual and Motor Skills, 76, 98.Google Scholar
  90. Mulder A. B., Arts M.P.M., Lopes da Silva F. H. (1997). Short-and long-term plasticity of the hippocampus to nucleus accumbens and prefrontal cortex pathways in the rat, in vivo. European Journal of Neuroscience, 9, 1603–1611.Google Scholar
  91. Nestler E., Aghajanian G. (1997). Molecular and cellular basis of addiction. Science 278, 58–62.Google Scholar
  92. Nestler E. J. (2001). Psychogenomics: opportunities for understanding addiction. Journal of Neuroscience, 21, 8324–8327.Google Scholar
  93. Nordin C., Eklundh T. (1999). Altered CSF 5-HIAA disposition in pathologic male gamblers. CNS Spectrums, 4, 25–33.Google Scholar
  94. Nudo R. J., Masterson R. B. (1986). Stimulation-induced {14C}2-deoxy-glucose laberling of synaptic activity in the cnetral auditory system. Journal of Comparative Neurology, 245, 553–565.Google Scholar
  95. O'Donnell P., Greene J., Pabello N., Lewis B. L., Grace A. A. (1999). Modulation of cell firing in the nucleus accumbens. Annals of the New York Academy of Sciences, 877, 157–175.Google Scholar
  96. O'Donnell P. O., Grace A. A. (1995). Synaptic interactions among excitatroy afferents to the nucleus accumbens neurons: hippocampal gating of prefrontal cortical input. The Journal of Neuroscience, 15, 3622–3639.Google Scholar
  97. Ongur D., Price J. L. (2000). The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys, and humans. Cerebral Cortex, 10, 206–219.Google Scholar
  98. Panksepp J. (1998a). Rough-and tumble play: The brain sources of joy. Affective Neuroscience. New York: Oxford University Press, pp. 280–299.Google Scholar
  99. Panksepp J. (1998b). SEEKING Systems and anticipatory States of the Nervous System. Affetive Neuroscience. New york: Oxsford University Press, pp. 144–163.Google Scholar
  100. Panksepp J. (1998c). The varieties of love and lust: neural control of sexuality. Affective Neuroscience. New York: Oxford University Press, pp. 225–245.Google Scholar
  101. Patterson C. M., Newman J. P. (1993). Reflectivity and learning from aversive events: toward a psychological mechanism for syndromes of disinhibition. Psychological Review, 100, 716–36.Google Scholar
  102. Paus T., Zijdenbos A., Worsley K., et al. (1999). Structural maturation of neural pathways in children and adolescents: in vivo study. Science, 283, 1908–1911.Google Scholar
  103. Pennartz C.M.A., Ameerun R. F., Groenewegen H. J., Lopez da Silva F. H. (1993). Synaptic plasticity in an in vitro slice preparation of the rat nucleus accumbens. European Jounral of Neuroscience, 5, 107–17.Google Scholar
  104. Pennartz C.M.A., Groenewegen H. J., Lopez da Silva F. H. (1994). The nucleus accumbens as a complex of functionally distinct neuronal ensembles: an integration of behavioral, electrophysiological and anatomical data. Progress in Neurobiology, 42, 719–761.Google Scholar
  105. Peterson B. S. (1995). Neuroimaging in child and adolescent neuropsychiatric disorders. Journal of the American Academy of Child and Adolescent Psychiatry, 34, 1560–1576.Google Scholar
  106. Petry N. M. (2001a). Delay discounting of money and alcohol in actively using alcoholics, currently abstinent alcoholics, and controls. Psychopharmacologia, 154, 243–250.Google Scholar
  107. Petry N. M. (2001b). Pathological gamblers, with and without substance use disorders, discount delayed rewards at high rates. Journal of Abnormal Psychology, 110, 482–487.Google Scholar
  108. Petry N. M. (2001c). Substance abuse, pathological gambling, and impulsiveness. Drug and Alcohol Dependence, 63, 29–38.Google Scholar
  109. Petry N. M., Casarella T. (1999). Excessive discounting of delayed rewards in substance abusers with gambling problems. Drug and Alchohol Dependence 56, 25–32.Google Scholar
  110. Piazza P. V., Deminiere J. M., Le Moal M., Simon H. (1989). Factors ther predict individual vulnerability to amphetamine self-administration. Science, 245, 1511–1513.Google Scholar
  111. Potenza M. N. (2001). The Neurobiology of Pathological Gambling. Seminars in Clinical Neuropsychiatry 6, 217–226.Google Scholar
  112. Potenza M. N., Hollander E. (2002). Pathological Gambling and Impulse Control Disorders. In Nemeroff C., Coyle J., Charney D., Davis K. (Eds.), Neuropsychopharmacology: the 5th Generation of Progress. Baltimore: Lippincott, Williams and Wilkins. p. 1725–1741.Google Scholar
  113. Potenza M. N., Steinberg M. A., McLaughlin S. D., Wu R., Rounsaville B. J., O'Malley S. S. (2000). Illegal behaviors in problem gambling: analysis of data from a gambling helpline. Journal of the American Academy of Psychiatry and Law, 28, 389–403.Google Scholar
  114. Potenza M. N., Wilber M. K. (2001). Neuroimaging studies of pathological gambling and substance dependence. Psychiatric Times, 17.Google Scholar
  115. Raine A., Lencz T., Bihrele S., LaCasse L., Colletti P. (2000). Reduced prefrontal gray matter volume and reduced autonomic activity in antisocial personality disorder. Archives of General Psychiatry, 57, 119–127.Google Scholar
  116. Ravel S., Sardo P., Legallet E., Apicella P. (2001). Reward unpredictability inside and outside of a task context as a determinant of the responses of tinically active neurons in the monkey striatum. Journal of Neuroscience, 21, 5730–5739.Google Scholar
  117. Reigier D. A., Farmer M. E., Rae D. S., et al. (1990). Comorbidity of mental disorders with alcohol and other drugs of abuse. Journal of the American Medical Association, 264, 2511–2518.Google Scholar
  118. Robertson L. C. (1996). Perceptual disturbance in focal neurological diseases. In Fogel B. S., Schiffer R. B., Rao S. M. (Eds.), Neuropsychiatry. Baltimore: Williams & Wilkins, pp. 345–364.Google Scholar
  119. Robinson T. E., Berridge K. C. (1993). The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Research Reviews, 18, 247–291.Google Scholar
  120. Rogers R. D., Everitt B., Baldacchino A., et al. (1999). Dissociable defecits in the decision-making cognition of chronic amphetamine abusers, opiate abusers, patients with focal damage to prefrontal cortex, and tryptophan-depleted normal volunteers: evidence for monoaminergic mechanisms. Neuropsychopharmacology, 20, 322–339.Google Scholar
  121. Rogers R. D., Robbins T. W. (2001). Investigating the neurocognitive deficits associated with chronic drug misuse. Current Opinion in Neurobiology, 11, 250–257.Google Scholar
  122. Roy A., De Jong J., Linnoila M. (1989). Extraversion in pathological gamblers. Archives of General Psychiatry, 46, 679–681.Google Scholar
  123. Rutherford L. C., Nelson S. B., Turrigiano G. G. (1998). BDNF has opposite effects on the quantal amplitude of pyramidal neuron and interneuron excitatory synapses. Neuron, 21, 521–530.Google Scholar
  124. Sano M., Marder K., Dooneief G. (1996). Basal ganglia diseases. In Fogel B. S., Schiffer R. B., Rao S. M. (Eds.), Neuropsychiatry. Baltimore: Williams & Wilkins, pp. 805–834.Google Scholar
  125. Schmajuk N. A., Christionsen B., Cox L. (2000). Haloperidol reinstates latent inhibition impaired by hippocampal lesions: data and theory. Behavioral Neurosceince, 114, 659–670.Google Scholar
  126. Self D. W., Nestler E. J. (1998). Relapse to drug-seeking:neural and molecular mechanisms. Drug and Alcohol Dependence, 51, 49–60.Google Scholar
  127. Shaffer H. J. (2000). Introduction: Youth Gambling. Journal of Gambling Studies, 16, 113–114.Google Scholar
  128. Shaffer H. J., Hall M. N. (2001). Updating and refining prevalence estimates of disordered gambling behavior in the United States and Canada. Canadian Journal of Public Health, 92, 168–172.Google Scholar
  129. Shaffer H. J., Hall M. N., J.V.B. (1999). Estimating the prevalence of disordered gambling behavior in the United States and Canada: A research synthesis. American Jounral of Public Health, 89, 1369–1376.Google Scholar
  130. Shinohara K., Yanagisawa A., Kagota Y., et al. (1999). Physiological changes in Pachinko players; beta-endorphin, catacholamines, immune system substances and heart rate. Applied Human Sciences, 18, 37–42.Google Scholar
  131. Shughrue P. J., Merchenthaler I. (2000). Estrogen is more than just a “sex hormine”: novel sites for estrogen action in the hippocampus. Frontiers in Neuroendocrinology 21, 95–101.Google Scholar
  132. Siegel J., Shaughnessy M. F. (1995). There's a first time for everything: understanding adolescence. Adolescence, 30, 217–221.Google Scholar
  133. Sizonenko P. C. (1978): Endocrinology in preadolescents and adolescents. American Journal of Diseases of Children, 132, 704–712.Google Scholar
  134. Slutske W. S., Eisen S., True W. R., Lyons M. J., Goldberg J., Tsuang M. (2000). Common genetic vulnerability for pathological gambling and alchohol dependence in men. Archives of General Psychiatry, 57, 666–674.Google Scholar
  135. Sowell E. R., Thompson P. M., Tessner K. D., Toga A. W. (2001). Mapping continued brain growth and gray matter density reduction in dorsal frontal cortex: inverse relationships during postadolescent brain maturation. The Journal of Neuroscience, 21, 8819–8829.Google Scholar
  136. Spinelli D. N., Jensen F. E., Prisco G. V. (1980). Early experience effect on dendritic branching in normally reared kittens. Experimental Neurology, 68, 1–11.Google Scholar
  137. Spitzer M. (1999): The mind within the net. Cambridge, MA: The MIT Press.Google Scholar
  138. Spunt B., Dupont I., Lesieur H., Liberty H. J., Hunt D. (1998). Pathological gambling and substance misuse: a review of the literature. Substance Use and Misuse, 33, 2535–2560.Google Scholar
  139. Strafella A. P., Paus T., Barrett J., Dagher A. (2001). Repetitive transcranial magnetic stimulation of the human prefrontal cortex induces dopamine release in the caudate nucleus. The Journal of Neuroscience, 21, RC, 157.Google Scholar
  140. Swanson L. W. (2000). Cerebral hemisphere regulation of motivated behavior. Brain research, 886, 113–164.Google Scholar
  141. Takeuchi Y., Matsushita H., Sakai H., Kawano H., Yoshimoto K., Sawada T. (2000). Developmental changes in cerebrospinal fluid concentrations of monoamine-related substances revealed with a Coulochem electrode array system. Journal of Child Neurology, 15, 267–70.Google Scholar
  142. Taveres H., Zilberman M., Beites F., Gentil V. (2001). Gender differences in gambling progression. Journal of Gambling Studies, 17, 151–160.Google Scholar
  143. Taylor J. R., Jentsch J. D. (2001). Repeated intermittent administration of psychomotor stimulant drugs alters the acquisition of Pavlovian approach behavior in rats: differential effects of cocine, d-Amphetamine and 3,4-methylenedioxymethamphetamine (“Ecstasy”). Biological Psychiatry, 50, 137–43.Google Scholar
  144. Tsuchida K., Ujike H., Kanzaki A., Fujiwara Y., Akiyama K. (1994). Ontogeny of enhanced striatal dopamine release in rats with methamphetamine-inuced behavioral sensitization. Pharmacology, Biochemistry & Behavior, 47, 161–9.Google Scholar
  145. Virkunnen M., Rawlins R., Tokola R. (1994). CSF biolochemistries, glucose metabolism, and diurnal activity rythms in alcoholic violent offenders, fire setters, and healthy volunteers. Archives of General Psychiatry, 51, 20–27.Google Scholar
  146. Volkow N. D., Fowler J. S. (2000). Addiction, a disease of compulsion and drive: involvement of the orbitofrontal cortex. Cerebral Cortex, 10, 318–325.Google Scholar
  147. Waelti P., Dickinson A., Schultz W. (2001). Dopamine responses comply with basic assumptions of formal learning theory. Nature, 412, 43–48.Google Scholar
  148. Wexler B. E., Gottschalk C. H., Fullbright R. F., et al. (2001). fMRI of cocaine craving. American Journal of Psychiatry 158, 86–95.Google Scholar
  149. White S. R., Obradovic T., Imel K. M., Wheaton M. J. (1996). The effects of methelenedioxymethamphetamine (MDMA, “ecstasy”) on monoaminergic neurotransmission in the central nervous system. Progress in Neurobiology, 49, 455–479.Google Scholar
  150. Williams B. R., Ponesse J. S., Schachar R. J., Logan G. D., Tannock R. (1999). Development of inhibitory control across the life span. Developmental Psychology, 35, 205–213.Google Scholar
  151. Winters K. C., Anderson N. (2000). Gambling involvement and drug use among adolescents. Journal of Gambling Studies, 16, 175–198.Google Scholar
  152. Winters K. C., Stinchfield R., Fulkerson J. (1990). Adolescenct gambling behavior in Minnesota: a benchmark, Report to the Department of Human Services Mental Health Division. Duluth, MN: Center for Addiction Studies, University of Minnesota.Google Scholar
  153. Woo T. U., Pucak M. L., Kye C. H., Matus C. V., Lewis D. A. (1997). Peripubertal refinement of the intrinsic and associational circuitry in monkey prefrontal cortex. Neuroscience, 80, 1149–1158.Google Scholar
  154. Yakovlev P. I., Lecours A. R. (1967). The myelogenetic cycles of regional maturation of the brain. Philadelphia: Davis Co.Google Scholar
  155. Yang C. R., Mogensen G. J. (1985). An electrophysiological study of the neural projections from the hippocampus to the ventral pallidum and the subpallidal areas by way of the nucleus accumbens. Neuroscience, 15, 1015–1024.Google Scholar
  156. Yates T. (1996). Theries of Cognitive Development. In Lewis M. (ed.), Child and Adolescent Psychiatry. Baltimore: Williams & Wilkins, pp. 134–155.Google Scholar
  157. Youngren K. D., Daly D. A., Moghaddam B. (1993). Distinct actions of endogenous excitatory amino acids on the outflow of dopamine in the nucleus accumbens. The Journal of Pharmacology and Experimental Therapeutics, 264, 289–293.Google Scholar
  158. Zarrow M. X., Naqvi R. H., Denenberg V. H. (1969). Androgen-induced precocious puberty in the female rat and its inhibition by hippocampal lesions. Endocrinology, 84, 14–9.Google Scholar
  159. Zuckerman M. (1993). P-impulsive sensation seeking and its behavioral, psychophysiological and biochemical correlates. Neuropsychobiology, 28, 30–6.Google Scholar

Copyright information

© Human Sciences Press, Inc. 2003

Authors and Affiliations

  • R. Andrew Chambers
    • 1
  • Marc N. Potenza
    • 1
  1. 1.Yale University School of MedicineNew Haven

Personalised recommendations