Advertisement

Journal of Computer-Aided Molecular Design

, Volume 16, Issue 7, pp 479–499 | Cite as

De novo ligand design with explicit water molecules: an application to bacterial neuraminidase

  • Ricardo L. Mancera
Article

Abstract

Most computer-aided drug design methods ignore the presence of crystallographically-determined water molecules in the binding site of a target protein. In this paper, our de novo ligand design methods are applied to the X-ray crystal structure of bacterial neuraminidase in the presence of some selected water molecules. We have found that, for this particular protein, the complete removal of all bound water molecules leads to difficulties in generating any potential ligands if the unsatisfied hydrogen-bonding sitepoints left by removing these water molecules are to be satisfied by a ligand. As more of the crystallographically determined water molecules are allowed in the binding site, it becomes much easier to generate ligands in larger numbers and with wider chemical diversity. This example shows that, in some cases, bound water molecules can be more accessible for hydrogen bonding to an incoming ligand than the actual protein binding sitepoints associated with them. From the point of view of de novo ligand design, water molecules can thus act as versatile amphiprotic hydrogen-bonding sitepoints and reduce the conformational constraints of a particular binding site.

De novo drug design structure generation water molecules ligand-protein interactions X-ray crystal structures hydration neuraminidase. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Goodford, P.J., J. Med. Chem., 28 (1985) 849.Google Scholar
  2. 2.
    Kuntz, I.D., Science, 257 (1992) 1078.Google Scholar
  3. 3.
    Kuntz, I.D., Meng, E.C. and Shoichet, B.K., Acc. Chem. Res., 27 (1994) 117.Google Scholar
  4. 4.
    Lewis, R.M. and Leach, A.R., J. Comp-Aided Mol. Des., 8 (1994) 467.Google Scholar
  5. 5.
    Bohm, H.J., J. Comp-Aided Mol. Des., 6 (1992) 593.Google Scholar
  6. 6.
    Gillet, V.J., Johnson, A.P., Mata, P., Sik, S. and Williams, P., J. Comp-Aided Mol. Des., 7 (1993) 127.Google Scholar
  7. 7.
    Miranker, A. and Karplus, M., Proteins: Structure, Function and Genetics, 11 (1991) 29.Google Scholar
  8. 8.
    Moon, J.B. and Howe, W.J., Proteins: Structure, Function and Genetics, 11 (1991) 314.Google Scholar
  9. 9.
    Glen, R.C. and Payne, A.W.R., J. Comp-Aided Mol. Des., 9 (1995) 181.Google Scholar
  10. 10.
    Pearlman, D.A. and Murcko, M.A., J. Med. Chem. 39 (1996) 1651.Google Scholar
  11. 11.
    Liu, H., Duan, Z., Luo, Q. and Shi, Y., Proteins: Structure, Function and Genetics, 36 (1999) 462.Google Scholar
  12. 12.
    Mikol, V., Papageorgiou, C. and Borer, X., J. Med. Chem., 38 (1995) 3361.Google Scholar
  13. 13.
    Dunitz, J.D., Science, 264 (1994) 670.Google Scholar
  14. 14.
    Dunitz, J.D., Chemistry & Biology, 2 (1995) 709.Google Scholar
  15. 15.
    Ladbury, J.E., Chemistry & Biology, 3 (1996) 973.Google Scholar
  16. 16.
    Nakasako, M., J. Mol. Biol., 289 (1999) 547.Google Scholar
  17. 17.
    Faerman, C.H. and Karplus, P.A., Proteins: Structure, Function and Genetics, 23 (1995) 1.Google Scholar
  18. 18.
    Schwabe, J.W.R., Curr. Op. Struct. Biol., 7 (1997) 126.Google Scholar
  19. 19.
    Carrell, H.L., Glusker, J.P., Burger, V., Manfre, F., Tritsch, D., Biellmann, J-F., Proc. Natl. Acad. Sci. USA, 86 (1989) 4440.Google Scholar
  20. 20.
    Chung, E., Henriques, D., Renzoni, D., Zvelebil, M., Bradshaw, J.M., Waksman, G., Robinson, C.V. and Ladbury, J.E., Structure, 6 (1998) 1141.Google Scholar
  21. 21.
    Baker, E.L. and Hubbard, R.E., Prog. Biophys. Molec. Biol., 44 (1984) 97.Google Scholar
  22. 22.
    Loris, R., Langhorst, U., De Vos, S., Decanniere, K., Bouckaert, J., Maes, D., Transhue, T.R. and Stayaert, J., Proteins: Structure, Function and Genetics, 36 (1999) 117.Google Scholar
  23. 23.
    Loris, R., Stas, P.P. and Wyns, L., J. Biol. Chem., 269 (1994) 26722.Google Scholar
  24. 24.
    Ehrlich, L., Reckzo, M., Wade, R.C., Protein Eng., 11 (1998) 2054.Google Scholar
  25. 25.
    Raymer, M.L., Sanschagrin, P.C., Punch, W.F., Venkataram, S., Goodman, E.D. and Kuhn, L., J. Mol. Biol., 265 (1997) 445.Google Scholar
  26. 26.
    Sanschagrin, P.C. and Kuhn, L.A., Protein Science, 7 (1998) 445.Google Scholar
  27. 27.
    Carugo, O., Protein Eng., 12 (1999) 1021.Google Scholar
  28. 28.
    Carugo, O. and Bordo, D., Acta Crystallographica D, D55 (1999) 479.Google Scholar
  29. 29.
    Carugo, O. and Argos, P., Proteins: Structure, Function and Genetics, 31 (1998) 201.Google Scholar
  30. 30.
    Engh, R.A., Brandstetter, H., Sucher, G., Eichinger, A., Baumann, U., Bode, W., Huber, R., Poll, T., Rudolph, R. and von der Saal, W., Structure, 4 (1996) 1353.Google Scholar
  31. 31.
    Rejto, P.A. and Verkhivker, G.M., Proteins: Structure, Function and Genetics, 28 (1997) 313.Google Scholar
  32. 32.
    Finley, J.B., Atigadda, V.R., Duarte, F., Zhao, J.J., Brouillette, W.J., Air, G.M. and Luo, M., J. Mol. Biol., 293 (1999) 1107.Google Scholar
  33. 33.
    Palomer, A., Perez, J.J., Navea, S., Llorens, O., Pascual, J., Garcia, L. and Mauleon, D., J. Med. Chem., 43 (2000) 2280.Google Scholar
  34. 34.
    Poornima, C.S. and Dean, P.M., J. Comp-Aided Mol. Des., 9 (1995) 500.Google Scholar
  35. 35.
    Smith, P.E. and Pettitt, B.M., J. Phys. Chem., 98 (1994) 9700.Google Scholar
  36. 36.
    Honig, B. and Nicholls, A., Science, 268 (1995) 1144. 37._Gilson, M.K. and Honig, B., Proteins: Structure, Function and Genetics, 4 (1988) 7.Google Scholar
  37. 38.
    Straatsma, T.P., in Lipkwowitz, K.B. and Boyd, D.B. (Eds.), Reviews in Computational Chemistry, VCH Publishers Inc., U.S.A., 9 (1996) 81.Google Scholar
  38. 39.
    Lamb, M.L. and Jorgensen, W.L., Curr. Opinion Chem. Biol., 1 (1997) 449.Google Scholar
  39. 40.
    Aqvist, J., Medina, C., Samuelsson, J-E, Protein. Eng., 7 (1994) 385.Google Scholar
  40. 41.
    Hansson, T., Marelius, J., Aqvist, J., J. Comp-Aided Mol. Des., 12 (1998) 27.Google Scholar
  41. 42.
    Rarey, M., Kramer, B. and Lengauer, T., Proteins: Structure, Function and Genetics, 34 (1999) 17.Google Scholar
  42. 43.
    Pastor, M., Cruciani, G. and Watson, K.A., J. Med. Chem., 40 (1997) 4089.Google Scholar
  43. 44.
    Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N. and Bourne, P.E., Nucleic Acids Res., 28 (2000) 235.Google Scholar
  44. 45.
    Crennell, S.J., Garman, E.F., Laver, W.G., Vimr, E.R. and Taylor, G.L., Proc. Natl. Acad. Sci. USA, 90 (1993) 9852.Google Scholar
  45. 46.
    Crennell, S.J., Garman,.F., Philippon, C., Vasella, A., Laver, W.G., Vimr, E.R. and Taylor, G.L., J. Mol. Biol., 259 (1996) 264.Google Scholar
  46. 47.
    Mills, J.E.J., Perkins, T.D.J. and Dean, P.M., J. Comp-Aided Mol. Des., 11 (1997) 229.Google Scholar
  47. 48.
    Mills, J.E.J. and Dean, P.M., Proceedings of the 12th. European Symposium on Quantitative Structure-Activity Relationships: Molecular Modelling and Prediction of Bioactivity, Plenum, New York, 1998.Google Scholar
  48. 49.
    Todorov, N.P. and Dean, P.M., J. Comp-Aided Mol. Des., 11 (1997) 175.Google Scholar
  49. 50.
    Todorov, N.P. and Dean, P.M., J. Comp-Aided Mol. Des., 12 (1998) 335.Google Scholar
  50. 51.
    Todorov, N.P. and Dean, P.M., in Frauenfelder, H., Hummer, G. and Garcia, R. (Eds.), Biological Physics, American Institute of Physics, U.S.A., 1999.Google Scholar
  51. 52.
    Sobolev, V., Wade, R.C., Vriend, G. and Edelman, M., Proteins: Structure, Function and Genetics, 25 (1996) 120.Google Scholar
  52. 53.
    Dinur, U. and Hagler, A.T., in Lipkwowitz, K.B. and Boyd, D.B. (Eds.), Reviews in Computational Chemistry, VCH Publishers Inc., U.S.A., 2 (1991).Google Scholar
  53. 54.
    Greengard, L. and Rokhlin, V.I., J. Comp. Phys., 73 (1987) 325.Google Scholar
  54. 55.
    Ding, H.Q., Karasawa, N. and Goddard, W.A., J. Chem. Phys., 97 (1992) 4309.Google Scholar
  55. 56.
    Leach, A.R., Molecular Modelling: Principles and Applications, Longman, U.S.A., 1996.Google Scholar
  56. 57.
    Angus, D.I. and von Itzstein, M., Carbohydrate Res., 274 (1995) 279.Google Scholar
  57. 58.
    Walliman, K. and Vasella, A., Helvet. Chim. Acta, 73 (1990) 1359.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  1. 1.De Novo Pharmaceuticals Ltd.Compass HouseCambridge CB4~9ZRUnited Kingdom

Personalised recommendations